
Curve Fitting Toolbox™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Curve Fitting Toolbox™ User's Guide
© COPYRIGHT 2001–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
July 2001 First printing New for Version 1 (Release 12.1)
July 2002 Second printing Revised for Version 1.1 (Release 13)
June 2004 Online only Revised for Version 1.1.1 (Release 14)
October 2004 Online only Revised for Version 1.1.2 (Release 14SP1)
March 2005 Online only Revised for Version 1.1.3 (Release 14SP2)
June 2005 Third printing Minor revision
September 2005 Online only Revised for Version 1.1.4 (Release 14SP3)
March 2006 Online only Revised for Version 1.1.5 (Release 2006a)
September 2006 Online only Revised for Version 1.1.6 (Release 2006b)
November 2006 Fourth printing Minor revision
March 2007 Online only Revised for Version 1.1.7 (Release 2007a)
September 2007 Online only Revised for Version 1.2 (Release 2007b)
March 2008 Online only Revised for Version 1.2.1 (Release 2008a)
October 2008 Online only Revised for Version 1.2.2 (Release 2008b)
March 2009 Online only Revised for Version 2.0 (Release 2009a)
September 2009 Online only Revised for Version 2.1 (Release 2009b)
March 2010 Online only Revised for Version 2.2 (Release 2010a)
September 2010 Online only Revised for Version 3.0 (Release 2010b)
April 2011 Online only Revised for Version 3.1 (Release 2011a)
September 2011 Online only Revised for Version 3.2 (Release 2011b)
March 2012 Online only Revised for Version 3.2.1 (Release 2012a)
September 2012 Online only Revised for Version 3.3 (Release 2012b)
March 2013 Online only Revised for Version 3.3.1 (Release 2013a)
September 2013 Online only Revised for Version 3.4 (Release 2013b)
March 2014 Online only Revised for Version 3.4.1 (Release 2014a)
October 2014 Online only Revised for Version 3.5 (Release 2014b)
March 2015 Online only Revised for Version 3.5.1 (Release 2015a)
September 2015 Online only Revised for Version 3.5.2 (Release 2015b)
March 2016 Online only Revised for Version 3.5.3 (Release 2016a)
September 2016 Online only Revised for Version 3.5.4 (Release 2016b)
March 2017 Online only Revised for Version 3.5.5 (Release 2017a)
September 2017 Online only Revised for Version 3.5.6 (Release 2017b)
March 2018 Online only Revised for Version 3.5.7 (Release 2018a)
September 2018 Online only Revised for Version 3.5.8 (Release 2018b)
March 2019 Online only Revised for Version 3.5.9 (Release 2019a)
September 2019 Online only Revised for Version 3.5.10 (Release 2019b)
March 2020 Online only Revised for Version 3.5.11 (Release 2020a)
September 2020 Online only Revised for Version 3.5.12 (Release 2020b)
March 2021 Online only Revised for Version 3.5.13 (Release 2021a)
September 2021 Online only Revised for Version 3.6 (Release 2021b)
March 2022 Online only Revised for Version 3.7 (Release 2022a)
September 2022 Online only Revised for Version 3.8 (Release 2022b)
March 2023 Online only Revised for Version 3.9 (Release 2023a)

Getting Started
1

Curve Fitting Toolbox Product Description . 1-2

Curve Fitting Tools . 1-3

Curve Fitting . 1-4
Interactive Curve Fitting . 1-4
Programmatic Curve Fitting . 1-4

Surface Fitting . 1-6
Interactive Surface Fitting . 1-6
Programmatic Surface Fitting . 1-6

Spline Fitting . 1-8
About Splines in Curve Fitting Toolbox . 1-8
Interactive Spline Fitting . 1-8
Programmatic Spline Fitting . 1-8

Interactive Fitting
2

Interactive Curve and Surface Fitting . 2-2
Introducing Curve Fitter App . 2-2
Fit Curve . 2-2
Fit Surface . 2-4
Model Types for Curves and Surfaces . 2-6
Selecting Data to Fit in Curve Fitter App . 2-7
Save and Reopen Sessions . 2-9

Data Selection . 2-10
Selecting Data to Fit in Curve Fitter App . 2-10
Selecting Compatible Size Surface Data . 2-11
Troubleshooting Data Problems . 2-12

Create Multiple Fits in Curve Fitter App . 2-13
Refining Your Fit . 2-13
Creating Multiple Fits . 2-13
Displaying Multiple Fits Simultaneously . 2-13
Using the Statistics in the Table of Fits . 2-15

Compare Fits in Curve Fitter App . 2-17
Interactive Curve Fitter Workflow . 2-17

v

Contents

Loading Data and Creating Fits . 2-17
Determining the Best Fit . 2-19
Analyzing Best Fit in the Workspace . 2-25
Saving Your Work . 2-28

Surface Fitting to Franke Data . 2-30

Programmatic Curve and Surface Fitting
3

Curve and Surface Fitting . 3-2
Fitting a Curve . 3-2
Fitting a Surface . 3-2
Model Types and Fit Analysis . 3-2
Workflow for Command Line Fitting . 3-3

Curve and Surface Fitting Objects and Object Functions 3-5
Curve Fitting Objects . 3-5
Curve Fitting Object Functions . 3-6
Surface Fitting Objects and Object Functions . 3-8

Linear and Nonlinear Regression
4

Parametric Fitting . 4-2
Parametric Fitting with Library Models . 4-2
Select Model Type . 4-3
Center and Scale Data . 4-4
Specify Fit Options and Optimized Starting Points 4-5

List of Library Models for Curve and Surface Fitting 4-10
Use Library Models to Fit Data . 4-10
Library Model Types . 4-10
Model Names and Equations . 4-11

Polynomial Models . 4-14
About Polynomial Models . 4-14
Fit Polynomial Models Interactively . 4-15
Fit Polynomials Using the Fit Function . 4-16
Polynomial Model Fit Options . 4-26
Defining Polynomial Terms for Polynomial Surface Fits 4-27

Exponential Models . 4-29
About Exponential Models . 4-29
Fit Exponential Models Interactively . 4-29
Fit Exponential Models Using the fit Function . 4-31

Fit Fourier Models . 4-36
About Fourier Series Models . 4-36

vi Contents

Fit Fourier Model Interactively in Curve Fitter App 4-36
Fit Fourier Model at the Command Line . 4-41

Gaussian Models . 4-52
About Gaussian Models . 4-52
Fit Gaussian Models Interactively . 4-52
Fit Gaussian Models Using the fit Function . 4-53

Power Series . 4-56
About Power Series Models . 4-56
Fit Power Series Models Interactively . 4-56
Fit Power Series Models Using the fit Function . 4-57

Rational Polynomials . 4-60
About Rational Models . 4-60
Fit Rational Models Interactively . 4-60
Selecting a Rational Fit at the Command Line . 4-61
Example: Rational Fit . 4-61

Sum of Sines Models . 4-67
About Sum of Sines Models . 4-67
Fit Sum of Sine Models Interactively . 4-67
Selecting a Sum of Sine Fit at the Command Line 4-68

Weibull Distributions . 4-70
About Weibull Distribution Models . 4-70
Fit Weibull Models Interactively . 4-70
Selecting a Weibull Fit at the Command Line . 4-71

Introduction to Least-Squares Fitting . 4-73
Calculating Residuals . 4-73
Error Assumptions . 4-74
Linear Least Squares . 4-74
Weighted Least Squares . 4-75
Robust Least Squares . 4-76
Nonlinear Least Squares . 4-77

Custom Linear and Nonlinear Regression
5

Custom Models . 5-2
Custom Models vs. Library Models . 5-2
Selecting a Custom Equation Fit Interactively . 5-2
Selecting a Custom Equation Fit at the Command Line 5-5

Custom Linear Fitting . 5-7
About Custom Linear Models . 5-7
Selecting a Linear Fitting Custom Fit Interactively 5-7
Selecting Linear Fitting at the Command Line . 5-8
Fit Custom Linear Legendre Polynomials . 5-9

Custom Nonlinear Census Fitting . 5-20

vii

Custom Nonlinear ENSO Data Analysis . 5-23
Load Data and Fit Library and Custom Fourier Models 5-23
Use Fit Options to Constrain a Coefficient . 5-26
Create Second Custom Fit with Additional Terms and Constraints 5-28
Create a Third Custom Fit with Additional Terms and Constraints 5-29

Gaussian Fitting with an Exponential Background 5-32

Surface Fitting to Biopharmaceutical Data . 5-35

Interpolation and Smoothing
6

Nonparametric Fitting . 6-2

Interpolation with Curve Fitting Toolbox . 6-3
About Interpolation Methods . 6-3
Selecting an Interpolant Fit . 6-4

Extrapolation for Interpolant Fit Types . 6-8
Selecting an Extrapolation Method . 6-9

Smoothing Splines . 6-14
About Smoothing Splines . 6-14
Select Smoothing Spline Fit Interactively . 6-15
Fit Smoothing Spline Models Using the fit Function 6-16
Compare Cubic and Smoothing Spline Fit Using Curve Fitter 6-18

Lowess Smoothing . 6-22
About Lowess Smoothing . 6-22
Select Lowess Fit Interactively . 6-22
Fit Lowess Models Using the fit Function . 6-23

Fit Smooth Surfaces to Investigate Fuel Efficiency 6-26

Filtering and Smoothing Data . 6-34
About Data Filtering and Smoothing . 6-34
Moving Average Filtering . 6-34
Savitzky-Golay Filtering . 6-35
Local Regression Smoothing . 6-36
Example: Smoothing Data . 6-40
Example: Smoothing Data Using Loess and Robust Loess 6-41

Fit Postprocessing
7

Explore and Customize Plots . 7-2
Displaying Fit and Residual Plots . 7-2
Viewing Surface Plots and Contour Plots . 7-3

viii Contents

Using Zoom, Pan, Data Cursor, and Outlier Exclusion 7-4
Customizing the Fit Display . 7-5
Print to MATLAB Figures . 7-6

Remove Outliers . 7-8
Remove Outliers Interactively . 7-8
Exclude Data Ranges . 7-8
Remove Outliers Programmatically . 7-8

Select Validation Data . 7-12

Generate Code and Export Fits to the Workspace 7-13
Generating Code from the Curve Fitter App . 7-13
Exporting a Fit to the Workspace . 7-14

Evaluate a Curve Fit . 7-16

Evaluate a Surface Fit . 7-24

Compare Fits Programmatically . 7-31

Evaluating Goodness of Fit . 7-43
How to Evaluate Goodness of Fit . 7-43
Goodness-of-Fit Statistics . 7-44

Residual Analysis . 7-47
Plotting and Analysing Residuals . 7-47
Example: Residual Analysis . 7-48

Confidence and Prediction Bounds . 7-51
About Confidence and Prediction Bounds . 7-51
Confidence Bounds on Coefficients . 7-51
Prediction Bounds on Fits . 7-52
Compute Prediction Intervals . 7-54

Differentiating and Integrating a Fit . 7-56

Spline Fitting

About Splines
8

Introducing Spline Fitting . 8-2
Spline Overview . 8-2
Interactive Spline Fitting . 8-2
Programmatic Spline Fitting . 8-3

Curve Fitting Toolbox Splines and MATLAB Splines 8-4
Curve Fitting Toolbox Splines . 8-4

ix

Splines . 8-5
MATLAB Splines . 8-5
Expected Background . 8-6
Vector Data Type Support . 8-6
Spline Function Naming Conventions . 8-6
Arguments for Curve Fitting Toolbox Spline Functions 8-7
Acknowledgments . 8-7

Simple Spline Examples
9

Cubic Spline Interpolation . 9-2
Cubic Spline Interpolant of Smooth Data . 9-2
Periodic Data . 9-3
Other End Conditions . 9-4
General Spline Interpolation . 9-4
Knot Choices . 9-5
Smoothing . 9-5
Least Squares . 9-7

Vector-Valued Functions . 9-8

Fitting Values at N-D Grid with Tensor-Product Splines 9-10

Fitting Values at Scattered 2-D Sites with Thin-Plate Smoothing
Splines . 9-12

Postprocessing Splines . 9-13

Types of Splines
10

Types of Splines: ppform and B-form . 10-2
Polynomials vs. Splines . 10-2
ppform . 10-2
B-form . 10-2
Knot Multiplicity . 10-3

B-Splines and Smoothing Splines . 10-4
B-Spline Properties . 10-4
Variational Approach and Smoothing Splines 10-4

Multivariate and Rational Splines . 10-6
Multivariate Splines . 10-6
Rational Splines . 10-7

The ppform . 10-8
Introduction to ppform . 10-8
Definition of ppform . 10-8

x Contents

Constructing and Working with ppform Splines 10-10
Constructing a ppform . 10-10
Working With ppform Splines . 10-10
Example ppform . 10-11

The B-form . 10-13
Introduction to B-form . 10-13
Definition of B-form . 10-13
B-form and B-Splines . 10-13
B-Spline Knot Multiplicity . 10-14
Choice of Knots for B-form . 10-15

Constructing and Working with B-form Splines 10-17
Construction of B-form . 10-17
Working With B-form Splines . 10-17
Example: B-form Spline Approximation to a Circle 10-18

Multivariate Tensor Product Splines . 10-21
Introduction to Multivariate Tensor Product Splines 10-21
B-form of Tensor Product Splines . 10-21
Construction With Gridded Data . 10-21
ppform of Tensor Product Splines . 10-22
Example: The Mobius Band . 10-22

NURBS and Other Rational Splines . 10-23
Introduction to Rational Splines . 10-23
rsform: rpform, rBform . 10-23

Constructing and Working with Rational Splines 10-25
Rational Spline Example: Circle . 10-25
Rational Spline Example: Sphere . 10-26
Functions for Working With Rational Splines 10-26

Constructing and Working with stform Splines 10-28
Introduction to the stform . 10-28
Construction and Properties of the stform 10-28
Working with the stform . 10-29

Advanced Spline Examples
11

Least-Squares Approximation by Natural Cubic Splines 11-2
Problem . 11-2
General Resolution . 11-2
Need for a Basis Map . 11-2
A Basis Map for “Natural” Cubic Splines . 11-3
The One-line Solution . 11-3
The Need for Proper Extrapolation . 11-3
The Correct One-Line Solution . 11-4
Least-Squares Approximation by Cubic Splines 11-5

xi

Solving A Nonlinear ODE . 11-6
Problem . 11-6
Approximation Space . 11-6
Discretization . 11-6
Numerical Problem . 11-7
Linearization . 11-7
Linear System to Be Solved . 11-7
Iteration . 11-8

Chebyshev Spline Construction . 11-10
What Is a Chebyshev Spline? . 11-10
Choice of Spline Space . 11-10
Initial Guess . 11-10
Remez Iteration . 11-11

Approximation by Tensor Product Splines 11-14
Choice of Sites and Knots . 11-14
Least Squares Approximation as Function of y 11-14
Approximation to Coefficients as Functions of x 11-16
The Bivariate Approximation . 11-16
Switch in Order . 11-17
Approximation to Coefficients as Functions of y 11-18
The Bivariate Approximation . 11-19
Comparison and Extension . 11-20

Examples
12

Polynomial Curve Fitting . 12-2

Surface Fitting with Custom Equations to Biopharmaceutical Data . . 12-14

How to Construct Splines . 12-20

Construct and Work with the B-form . 12-40

Construct and Work with the PPFORM . 12-57

How to Choose Knots . 12-66

Cubic Spline Interpolation . 12-74

Cubic Smoothing Splines . 12-94

Fitting a Spline to Titanium Test Data . 12-102

Splines in the Plane . 12-115

Constructing Spline Curves in 2D and 3D . 12-126

Smoothing a Histogram . 12-130

xii Contents

Bivariate Tensor Product Splines . 12-133

Solving a Nonlinear ODE with a Boundary Layer by Collocation 12-145

Construct Chebyshev Spline . 12-156

Export Fit from Curve Fitter App to Simulink Lookup Table 12-164

Fit Polynomial Model to Data . 12-173

Improve Model Fit with Weights . 12-175

Compare Robust Fitting Methods . 12-179

Fit Exponential Model to Data . 12-185

Functions
13

Bibliography
A

xiii

Getting Started

• “Curve Fitting Toolbox Product Description” on page 1-2
• “Curve Fitting Tools” on page 1-3
• “Curve Fitting” on page 1-4
• “Surface Fitting” on page 1-6
• “Spline Fitting” on page 1-8

1

Curve Fitting Toolbox Product Description
Fit curves and surfaces to data using regression, interpolation, and smoothing

Curve Fitting Toolbox provides an app and functions for fitting curves and surfaces to data. The
toolbox lets you perform exploratory data analysis, preprocess and post-process data, compare
candidate models, and remove outliers. You can conduct regression analysis using the library of
linear and nonlinear models provided or specify your own custom equations. The library provides
optimized solver parameters and starting conditions to improve the quality of your fits. The toolbox
also supports nonparametric modeling techniques, such as splines, interpolation, and smoothing.

After creating a fit, you can apply a variety of post-processing methods for plotting, interpolation, and
extrapolation; estimating confidence intervals; and calculating integrals and derivatives.

1 Getting Started

1-2

Curve Fitting Tools

Curve Fitting Toolbox software allows you to work in two different environments:

• An interactive environment, with the Curve Fitter app and the Spline Tool
• A programmatic environment that allows you to write object-oriented MATLAB® code using curve

and surface fitting methods

To open the Curve Fitter app or Spline Tool, enter one of the following:

• curveFitter (see Curve Fitter)
• splinetool

To list the Curve Fitting Toolbox functions for use in MATLAB programming, type the following:

help curvefit

The code for any function can be opened in the MATLAB Editor by typing edit, followed by the
function name. For example:

edit fittype

Brief command line help for any function is available by typing help, followed by the function name.
For example:

help smooth

Complete documentation for any function is available by typing doc, followed by the function name.
For example:

doc fit

You can change the way any toolbox function works by copying and renaming its file, examining your
copy in the editor, and then modifying it.

You can also extend the toolbox by adding your own files, or by using your code in combination with
functions from other toolboxes, such as Statistics and Machine Learning Toolbox or Optimization
Toolbox software.

 Curve Fitting Tools

1-3

https://www.mathworks.com/products/statistics.html
https://www.mathworks.com/products/optimization.html
https://www.mathworks.com/products/optimization.html

Curve Fitting

Interactive Curve Fitting
To interactively fit a curve, follow the steps in this simple example:

1 Load some data at the MATLAB command line.

load hahn1
2 Open the Curve Fitter app.

curveFitter
3 In the Curve Fitter app, on the Curve Fitter tab, in the Data section, click Select Data. In the

Select Fitting Data dialog box, select temp as the X data value and thermex as the Y data
value.

The Curve Fitter app creates a default polynomial fit to the data.
4 Choose a different model type from the fit gallery in the Fit Type section of the Curve Fitter tab.
5 In the Fit Options pane, try different fit options for your chosen model type.
6 In the Export section, click Export and select Generate Code.

The Curve Fitter app creates a file in the Editor containing MATLAB code to recreate the
currently selected fit and its opened plots in your interactive session.

For more information about fitting curves in the Curve Fitter app, see “Interactive Curve and Surface
Fitting” on page 2-2.

Programmatic Curve Fitting
To programmatically fit a curve, follow the steps in this simple example:

1 Load some data.

load hahn1
2 Create a fit using the fit function, specifying the variables and a model type (in this case rat23

is the model type).

f = fit(temp,thermex,"rat23")
3 Plot your fit and the data.

plot(f,temp,thermex)
f(600)

To learn what functions you can use to create and work with fits, see “Curve and Surface Fitting” on
page 3-2.

See Also
Curve Fitter | fit

1 Getting Started

1-4

Related Examples
• “Interactive Curve and Surface Fitting” on page 2-2
• “Linear and Nonlinear Regression”
• “Interpolation”
• “Smoothing”
• “Fit Postprocessing”

 Curve Fitting

1-5

Surface Fitting

Interactive Surface Fitting
To interactively fit a surface, follow the steps in this simple example:

1 Load some data at the MATLAB command line.

load franke

2 Open the Curve Fitter app.

curveFitter

3 In the Curve Fitter app, on the Curve Fitter tab, in the Data section, click Select Data. In the
Select Fitting Data dialog box, select x, y, and z as the X data, Y data, and Z data values,
respectively.

The Curve Fitter app creates a default interpolation fit to the data.
4 Choose a different model type from the fit gallery in the Fit Type section of the Curve Fitter tab.
5 In the Fit Options pane, try different fit options for your chosen model type.
6 In the Export section, click Export and select Generate Code.

The Curve Fitter app creates a file in the Editor containing MATLAB code to recreate the
currently selected fit and its opened plots in your interactive session.

For more information about fitting surfaces in the Curve Fitter app, see “Interactive Curve and
Surface Fitting” on page 2-2.

Programmatic Surface Fitting
To programmatically fit a surface, follow the steps in this simple example:

1 Load some data.

load franke

2 Create a fit using the fit function, specifying the variables and a model type (in this case
poly23 is the model type).

 f = fit([x y],z,"poly23")

3 Plot your fit and the data.

plot(f,[x y],z)

To learn what functions you can use to create and work with fits, see “Curve and Surface Fitting” on
page 3-2.

See Also
Curve Fitter | fit

1 Getting Started

1-6

Related Examples
• “Interactive Curve and Surface Fitting” on page 2-2
• “Linear and Nonlinear Regression”
• “Interpolation”
• “Smoothing”
• “Fit Postprocessing”

 Surface Fitting

1-7

Spline Fitting

In this section...
“About Splines in Curve Fitting Toolbox” on page 1-8
“Interactive Spline Fitting” on page 1-8
“Programmatic Spline Fitting” on page 1-8

About Splines in Curve Fitting Toolbox
You can work with splines in Curve Fitting Toolbox in several ways.

Using the Curve Fitter app or the fit function you can:

• Fit cubic spline interpolants to curves or surfaces
• Fit smoothing splines and shape-preserving cubic spline interpolants to curves (but not surfaces)
• Fit thin-plate splines to surfaces (but not curves)

The toolbox also contains specific splines functions to allow greater control over what you can create.
For example, you can use the csapi function for cubic spline interpolation. Why would you use
csapi instead of the fit function 'cubicinterp' option? You might require greater flexibility to
work with splines for the following reasons:

• You want to combine the results with other splines, for example, by addition.
• You want vector-valued splines. You can use csapi with scalars, vectors, matrices, and ND-arrays.

The fit function only allows scalar-valued splines.
• You want other types of splines such as ppform, B-form, tensor-product, rational, and stform thin-

plate splines.
• You want to create splines without data.
• You want to specify breaks, optimize knot placement, and use specialized functions for spline

manipulation such as differentiation and integration.

If you require specialized spline functions, see the following sections for interactive and
programmatic spline fitting.

Interactive Spline Fitting
You can access all spline functions from the Spline Tool (splinetool).

See “Introducing Spline Fitting” on page 8-2.

Programmatic Spline Fitting
To programmatically fit splines, see “Spline Construction” for descriptions of types of splines and
numerous examples.

1 Getting Started

1-8

Interactive Fitting

• “Interactive Curve and Surface Fitting” on page 2-2
• “Data Selection” on page 2-10
• “Create Multiple Fits in Curve Fitter App” on page 2-13
• “Compare Fits in Curve Fitter App” on page 2-17
• “Surface Fitting to Franke Data” on page 2-30

2

Interactive Curve and Surface Fitting

In this section...
“Introducing Curve Fitter App” on page 2-2
“Fit Curve” on page 2-2
“Fit Surface” on page 2-4
“Model Types for Curves and Surfaces” on page 2-6
“Selecting Data to Fit in Curve Fitter App” on page 2-7
“Save and Reopen Sessions” on page 2-9

Introducing Curve Fitter App
You can fit curves and surfaces to data and view plots with the Curve Fitter app.

• Create, plot, and compare multiple fits.
• Use linear or nonlinear regression, interpolation, smoothing, and custom equations.
• View goodness-of-fit statistics, display confidence intervals and residuals, remove outliers, and

assess fits with validation data.
• Automatically generate code to fit and plot curves and surfaces, or export fits to the workspace for

further analysis.

Fit Curve
1 Load some example data at the MATLAB command line.

load census
2 Open the Curve Fitter app.

curveFitter

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

3 On the Curve Fitter tab, in the Data section, click Select Data. In the Select Fitting Data dialog
box, select cdate as the X data value and pop as the Y data value. For details, see “Selecting
Data to Fit in Curve Fitter App” on page 2-7.

2 Interactive Fitting

2-2

The Curve Fitter app creates a default polynomial fit to the data.
4 Try different fit options. For example, in the Fit Options pane, change the polynomial Degree

value to 3 to fit a cubic polynomial.

5 Select a different model type from the fit gallery in the Fit Type section on the Curve Fitter tab.
For example, click the arrow to open the gallery, and click Smoothing Spline in the Smoothing
group. For information about models you can fit, see “Model Types for Curves and Surfaces” on
page 2-6.

 Interactive Curve and Surface Fitting

2-3

6 In the Export section, click Export and select Generate Code.

The Curve Fitter app creates a file in the Editor containing MATLAB code to recreate the
currently selected fit and its opened plots in your interactive session.

Tip For a detailed workflow example, see “Compare Fits in Curve Fitter App” on page 2-17.

To create multiple fits and compare them, see “Create Multiple Fits in Curve Fitter App” on page 2-
13.

Fit Surface
1 Load some example data at the MATLAB command line.

load franke

2 Open the Curve Fitter app.

curveFitter

2 Interactive Fitting

2-4

3 On the Curve Fitter tab, in the Data section, click Select Data. In the Select Fitting Data dialog
box, select x as the X data value, y as the Y data value, and z as the Z data value. For more
information, see “Selecting Data to Fit in Curve Fitter App” on page 2-7.

The Curve Fitter app creates a default interpolation fit to the data.
4 Select a different model type from the fit gallery in the Fit Type section on the Curve Fitter tab.

For example, click the arrow to open the gallery, and click Polynomial in the Regression
Models group.

For information about models you can fit, see “Model Types for Curves and Surfaces” on page 2-
6.

 Interactive Curve and Surface Fitting

2-5

5 Try different fit options for your chosen model type.
6 In the Export section, click Export and select Generate Code.

The Curve Fitter app creates a file in the Editor containing MATLAB code to recreate the
currently selected fit and its opened plots in your interactive session.

Tip For a detailed example, see “Surface Fitting to Franke Data” on page 2-30.

To create multiple fits and compare them, see “Create Multiple Fits in Curve Fitter App” on page 2-
13.

Model Types for Curves and Surfaces
Based on your selected data, the fit gallery shows either curve or surface fit groups. The following
table describes the options for curves and surfaces.

2 Interactive Fitting

2-6

Fit Group Fit Type Curves Surfaces
Regression Models Polynomial on page 4-

14
Yes (up to degree 9) Yes (up to degree 5)

Exponential on page 4-
29

Yes No

Fourier on page 4-36 Yes No
Gaussian on page 4-52 Yes No
Power on page 4-56 Yes No
Rational on page 4-60 Yes No
Sum of Sine on page 4-
67

Yes No

Weibull on page 4-70 Yes No
Interpolation Interpolant on page 6-

3
Yes, with methods:

• Nearest neighbor
• Linear
• Cubic
• Shape-preserving

(PCHIP)

Yes, with methods:

• Nearest neighbor
• Linear
• Cubic
• Biharmonic (v4)
• Thin-plate spline

Smoothing Smoothing Spline on
page 6-14

Yes No

Lowess on page 6-22 No Yes
Custom Custom Equation on

page 5-2
Yes Yes

Linear Fitting on page
5-7

Yes No

For information about these fit types, see:

• “Linear and Nonlinear Regression”
• “Custom Models” on page 5-2
• “Interpolation”
• “Smoothing”

Selecting Data to Fit in Curve Fitter App
To select data to fit in the Curve Fitter app, click Select Data in the Data section on the Curve
Fitter tab. You can select variables in your MATLAB workspace.

• To fit curves:

• In the Select Fitting Data dialog box, select X data and Y data.
• Select only Y data to plot Y against the index X = 1:length(Y).

• To fit surfaces, select X data, Y data, and Z data in the Select Fitting Data dialog box.

 Interactive Curve and Surface Fitting

2-7

In the Select Fitting Data dialog box, you can use the drop-down lists to select any numeric variable
in your MATLAB workspace that has more than one element. You can also select a numeric variable
that is a column in a table variable. First select the table name, and then select the column name.

Similarly, you can select any numeric variable in your workspace to use as Weights, including a
numeric table column.

For curves, the X and Y variables must have the same number of elements. If you specify weights, the
weights variable must have the same number of elements as the other data variables.

For surfaces, the X, Y, and Z variables must be either arrays with the same number of elements, or
two vectors (X and Y) representing the row and column headers of a matrix Z. If you specify weights,
the weights variable must have the same number of elements as the Z variable.

For more information, see “Selecting Compatible Size Surface Data” on page 2-11.

When you select variables, the Curve Fitter app immediately creates a curve or surface fit with the
default settings. If you want to avoid time-consuming refitting for large data sets, you can turn off the
automatic behavior. On the Curve Fitter tab, in the Fit section, select Manual.

Note The Curve Fitter app uses a snapshot of the data you select. Subsequent workspace changes to
the data have no effect on your fits. To update your fit data from the workspace, first change the
variable selection, and then reselect the variable with the drop-down controls.

If there are problems with the data you select, you can see messages in the Results pane. For
example, the Curve Fitter app ignores Infs, NaNs, and imaginary components of complex numbers in
the data, and displays messages in the Results pane in these cases.

If you see warnings about reshaping your data or incompatible sizes, read “Selecting Compatible Size
Surface Data” on page 2-11 and “Troubleshooting Data Problems” on page 2-12 for more
information.

2 Interactive Fitting

2-8

Save and Reopen Sessions
You can save and reopen sessions for easy access to multiple fits. The session file contains all the fits
and variables in your session and remembers your layout.

To save your session, first click the Save button in the File section on the Curve Fitter tab to open
your file browser. Next, select a name and location for your session file (with the file
extension .sfit).

After you save your session once, you can click Save and select Save Session to overwrite that
session with subsequent saves.

To save the current session under a different name, click Save and select Save Session As.

To reopen a session, click Open in the File section on the Curve Fitter tab to open a file browser
where you can select a saved curve fitting session file to load.

See Also

Related Examples
• “Compare Fits in Curve Fitter App” on page 2-17
• “Create Multiple Fits in Curve Fitter App” on page 2-13

 Interactive Curve and Surface Fitting

2-9

Data Selection

In this section...
“Selecting Data to Fit in Curve Fitter App” on page 2-10
“Selecting Compatible Size Surface Data” on page 2-11
“Troubleshooting Data Problems” on page 2-12

Selecting Data to Fit in Curve Fitter App
To select data to fit in the Curve Fitter app, click Select Data in the Data section on the Curve
Fitter tab. You can select variables in your MATLAB workspace.

• To fit curves:

• In the Select Fitting Data dialog box, select X data and Y data.
• Select only Y data to plot Y against the index X = 1:length(Y).

• To fit surfaces, select X data, Y data, and Z data in the Select Fitting Data dialog box.

In the Select Fitting Data dialog box, you can use the drop-down lists to select any numeric variable
in your MATLAB workspace that has more than one element. You can also select a numeric variable
that is a column in a table variable. First select the table name, and then select the column name.

Similarly, you can select any numeric variable in your workspace to use as Weights, including a
numeric table column.

For curves, the X and Y variables must have the same number of elements. If you specify weights, the
weights variable must have the same number of elements as the other data variables.

For surfaces, the X, Y, and Z variables must be either arrays with the same number of elements, or
two vectors (X and Y) representing the row and column headers of a matrix Z. If you specify weights,
the weights variable must have the same number of elements as the Z variable.

For more information, see “Selecting Compatible Size Surface Data” on page 2-11.

2 Interactive Fitting

2-10

When you select variables, the Curve Fitter app immediately creates a curve or surface fit with the
default settings. If you want to avoid time-consuming refitting for large data sets, you can turn off the
automatic behavior. On the Curve Fitter tab, in the Fit section, select Manual.

Note The Curve Fitter app uses a snapshot of the data you select. Subsequent workspace changes to
the data have no effect on your fits. To update your fit data from the workspace, first change the
variable selection, and then reselect the variable with the drop-down controls.

Selecting Compatible Size Surface Data

For surface data, in the Curve Fitter app you can select either arrays of the same size or tabular data.

Arrays of the Same Size

Curve Fitter app expects data variables to be the same size. If the sizes are different but the number
of elements are the same, then the app reshapes the variables to create a fit and displays a warning
in the Results pane. The warning indicates a possible problem with your selected data.

Tabular Data

The data variables can form tabular data, where X and Y represent the row and column headers of a
table (sometimes called breakpoints) and the Z values are the table values.

Sizes are compatible if:

• X data is a vector of length n.
• Y data is a vector of length m.
• Z data is a matrix of size [m,n].

The following table shows an example of data in tabular form with n = 4 and m = 3.

 x(1) x(2) x(3) x(4)
y(1) z(1,1) z(1,2) z(1,3) z(1,4)
y(2) z(2,1) z(2,2) z(2,3) z(2,4)
y(3) z(3,1) z(3,2) z(3,3) z(3,4)

Like the surf function, the Curve Fitter app expects data variables where length(X) = n,
length(Y) = m, and size(Z) = [m,n]. If the size of Z is [n,m], the app creates a fit by
transposing Z and provides a warning about the data transformation. You can see the warning in the
Results pane.

Using X data for rows and Y data for columns to match Z data matrix.

For an example of tabular data, run the following code.

x = linspace(0,1,7);
y = linspace(0,1,9).';
z = bsxfun(@franke,x,y);

For surface fitting at the command line with the fit function, use the prepareSurfaceData
function if your data is in tabular form.

 Data Selection

2-11

Weights

If you specify surface weights, specify a variable with the same size as Z. If the sizes are different but
the number of elements is the same, the Curve Fitter app reshapes the weights and displays a
warning.

Troubleshooting Data Problems
If there are problems with the data you select, you can see messages in the Results pane. For
example, the Curve Fitter app ignores Infs, NaNs, and imaginary components of complex numbers in
the data, and displays messages in the Results pane in these cases.

If you see warnings about reshaping your data or incompatible sizes, read “Selecting Compatible Size
Surface Data” on page 2-11 for more information.

The following warning indicates that two or more data points have (x, y) values that are the same or
very close together.

Duplicate x-y data points detected: using average of the z values

The default interpolant fit type needs to calculate a unique value at that point. You do not need do
anything to fix the problem; this warning is just for your information. The Curve Fitter app
automatically takes the average z value of any group of points with the same x-y values.

Other problems with your selected data can produce the following error.

Error computing Delaunay triangulation. Please try again with different data.

For some arrangements of the data, the Curve Fitter app is unable to compute a Delaunay
triangulation. Some of the surface interpolation methods (linear, cubic spline, and nearest neighbor)
require a Delaunay triangulation of the data. For example, this error can occur when all the data
points lie on a straight line in the x-y plane. In this case, the Curve Fitter app is unable to fit a surface
to the data. You need to provide more data in order to fit a surface.

2 Interactive Fitting

2-12

Create Multiple Fits in Curve Fitter App
In this section...
“Refining Your Fit” on page 2-13
“Creating Multiple Fits” on page 2-13
“Displaying Multiple Fits Simultaneously” on page 2-13
“Using the Statistics in the Table of Fits” on page 2-15

Refining Your Fit
After you create a single fit in the Curve Fitter app, you can refine your fit, using any of the following
optional steps:

• Change the fit type and settings. Select a fit type from the gallery in the Fit Type section of the
Curve Fitter tab. For fit settings for each model type, see “Linear and Nonlinear Regression”,
“Interpolation”, and “Smoothing”.

• Exclude data by removing outliers in the Curve Fitter app. See “Remove Outliers” on page 7-8.
• Select weights. See “Data Selection” on page 2-10.
• Select validation data. See “Select Validation Data” on page 7-12
• Create multiple fits to compare different fit types and settings side by side in the Curve Fitter app.

See “Creating Multiple Fits” on page 2-13.

Creating Multiple Fits
After you create a single fit, it can be useful to create multiple fits for comparison. When you create
multiple fits, you can compare different fit types and settings side by side in the Curve Fitter app.

After creating a fit, you can add a fit. On the Curve Fitter tab, in the File section, click New and
select New Fit. Each additional fit appears as a new tab in the Fits pane and a new row in the Table
Of Fits pane.

To create a copy of the current fit, click Duplicate in the File section of the Curve Fitter tab. You
also can right-click a fit in the Table Of Fits pane and select the Duplicate "Current Fit Name"
option. Each additional fit appears as a new tab in the Fits pane.

To delete a fit from your session, right-click the fit in the Table Of Fits pane and select the Delete
"Current Fit Name" option.

Use sessions to save and reopen your fits. See “Save and Reopen Sessions” on page 2-9.

Displaying Multiple Fits Simultaneously
After you have created multiple fits, you can compare different fit types and settings side by side in
the Curve Fitter app. You can view plots simultaneously, and you can examine the goodness-of-fit
statistics to compare your fits.

To compare plots and see multiple fits simultaneously, you can drag and drop the fit figure tabs in the
Fits pane. Alternatively, you can click the Document Actions arrow located to the far right of the fit

 Create Multiple Fits in Curve Fitter App

2-13

figure tabs. Select the Tile All option and specify the number and position of tiles you want to
display.

Each fit figure displays the plots for a single fit. The following example shows two fit figures displayed
side by side. You can see multiple fits in the session listed in the Table Of Fits pane.

You can close fit figure tabs in the Fits pane, but the fits remain in your session. The Table Of Fits
pane displays all your fits (open and closed). Click a fit in the Table Of Fits pane to open the fit
figure or bring focus to the figure if it is already open. To remove a fit, right-click the fit in the Table
Of Fits pane and select the Delete "Current Fit Name" option.

Tip If you want more space to view and compare plots, you can collapse the Fit Options, Results,
and Table Of Fits panes. Click and drag the left border of the Fit Options and Results panes until
they become tabs. Similarly, click and drag the top border of the Table Of Fits pane.

2 Interactive Fitting

2-14

Using the Statistics in the Table of Fits
The Table Of Fits pane shows all fits in the current session.

After using graphical methods to evaluate the goodness of fit, you can examine the goodness-of-fit
statistics shown in the table to compare your fits. The goodness-of-fit statistics help you determine
how well the model fits the data. Click the table column headers to sort by statistics, name, fit type,
and so on.

The following guidelines help you use the statistics to determine the best fit:

 Create Multiple Fits in Curve Fitter App

2-15

• R-square is the square of the correlation between the response values and the predicted response
values. A value closer to 1 indicates that a greater proportion of variance is accounted for by the
model.

• SSE is the sum of squares due to error of the fit. A value closer to zero indicates a fit that is more
useful for prediction.

• DFE is the degree of freedom in the error.
• Adj R-sq is the degrees of freedom adjusted R-square. A value closer to 1 indicates a better fit.
• RMSE is the root mean squared error or standard error. A value closer to 0 indicates a fit that is

more useful for prediction.
• # Coeff is the number of coefficients in the model. When you have several fits with similar
goodness-of-fit statistics, look for the smallest number of coefficients to help decide which fit is
best. You must trade off the number of coefficients against the goodness of fit indicated by the
statistics to avoid overfitting.

For a more detailed explanation of the Curve Fitting Toolbox statistics, see “Goodness-of-Fit
Statistics” on page 7-44.

To compare the statistics for different fits and decide which fit is the best tradeoff between over- and
under-fitting, use a similar process to that described in “Compare Fits in Curve Fitter App” on page 2-
17.

See Also

Related Examples
• “Compare Fits in Curve Fitter App” on page 2-17
• “Compare Fits Programmatically” on page 7-31

2 Interactive Fitting

2-16

Compare Fits in Curve Fitter App
In this section...
“Interactive Curve Fitter Workflow” on page 2-17
“Loading Data and Creating Fits” on page 2-17
“Determining the Best Fit” on page 2-19
“Analyzing Best Fit in the Workspace” on page 2-25
“Saving Your Work” on page 2-28

Interactive Curve Fitter Workflow
The next topics fit census data using polynomial equations up to the sixth degree, and a single-term
exponential equation. The steps demonstrate how to:

• Load data and explore various fits using different library models.
• Search for the best fit by:

• Comparing graphical fit results
• Comparing numerical fit results including the fitted coefficients and goodness-of-fit statistics

• Export your best fit results to the MATLAB workspace to analyze the model at the command line.
• Save the session and generate MATLAB code for all fits and plots.

Loading Data and Creating Fits
You must load the data variables into the MATLAB workspace before you can fit data using the Curve
Fitter app. For this example, the data is stored in the MATLAB file census.mat.

1 Load the data.

load census

The workspace contains two new variables.

• cdate is a column vector containing the years 1790 to 1990 in 10-year increments.
• pop is a column vector with the US population figures that correspond to the years in cdate.

2 Open the Curve Fitter app.

curveFitter
3 On the Curve Fitter tab, in the Data section, click Select Data. In the Select Fitting Data dialog

box, select the variable names cdate and pop from the X data and Y data lists, respectively.

The Curve Fitter app creates and plots a default fit to the X input (or predictor) data and the Y
output (or response) data. The default fit is a linear polynomial fit type. Observe the fit settings
display in the Fit Options pane. The fit is a first-degree polynomial.

4 In the Fit Options pane, change the fit to a second-degree polynomial by selecting 2 from the
Degree list.

The Curve Fitter app plots the new fit. The Curve Fitter app calculates a new fit when you
change fit settings because Auto is selected by default. If refitting is time consuming, as is

 Compare Fits in Curve Fitter App

2-17

sometimes the case for large data sets, you can turn off the automatic behavior. On the Curve
Fitter tab, in the Fit section, select Manual.

The Curve Fitter app displays results of fitting the census data with a quadratic polynomial in the
Results pane, where you can view the library model, fitted coefficients, and goodness-of-fit
statistics.

5 Change the name of the fit. In the Table Of Fits pane, double-click untitled fit 1 in the Fit
name column and type poly2.

6 Display the residuals. On the Curve Fitter tab, in the Visualization section, click Residuals
Plot.

The residuals indicate that a better fit might be possible. Therefore, continue exploring various
fits to the census data set.

7 Add new fits to try the other library equations.

a Right-click the fit in the Table Of Fits pane, and select Duplicate "poly2". Alternatively, on
the Curve Fitter tab, in the File section, click Duplicate.

Tip For fits of a given type (for example, polynomials), duplicate a fit instead of creating a
new fit because copying a fit requires fewer steps. The duplicated fit contains the same data
selections and fit settings.

2 Interactive Fitting

2-18

b Change the polynomial Degree to 3 and rename the fit poly3.
c When you fit higher degree polynomials, the Results pane displays this warning.

Equation is badly conditioned. Remove repeated data points
or try centering and scaling.

Normalize the data by selecting the Center and scale check box in the Fit Options pane.
d Repeat steps a and b to add polynomial fits up to the sixth degree. Then add an exponential

fit. On the Curve Fitter tab, in the File section, click New and select New Fit. In the Fit
Type section, click the arrow to open the gallery, and click Exponential in the Regression
Models section.

e For each new fit, look at the Results pane information, and the residuals plot in the app.

The residuals from a good fit should look random with no apparent pattern. A pattern, such
as a tendency for consecutive residuals to have the same sign, can be an indication that a
better model exists.

About Scaling

The warning about scaling arises because the fitting procedure uses the cdate values as the basis for
a matrix with very large values. The spread of the cdate values results in a scaling problem. To
address this problem, you can normalize the cdate data. Normalization scales the predictor data to
improve the accuracy of the subsequent numeric computations. For example, you can normalize
cdate by centering and scaling the data to have zero mean and unit standard deviation.

(cdate - mean(cdate))./std(cdate)

Note Because the predictor data changes after normalizing, the values of the fitted coefficients also
change when compared to the original data. However, the functional form of the data and the
resulting goodness-of-fit statistics do not change. Additionally, the data is displayed in the Curve
Fitter app plots using the original scale.

Determining the Best Fit
To determine the best fit, you should examine both the graphical and numerical fit results.

Examine the Graphical Fit Results

1 Determine the best fit by examining the graphs of the fits and residuals. To view plots for each fit
in turn, click the fit in the Table Of Fits pane. The graphical fit results indicate that:

• The fits and residuals for the polynomial equations are all similar, making it difficult to choose
the best one.

• The fit and residuals for the single-term exponential equation indicate it is a poor fit overall.
Therefore, it is a poor choice and you can remove the exponential fit from the candidates for
best fit.

2 Examine the behavior of the fits after the year 2000. The goal of fitting the census data is to
extrapolate the best fit to predict future population values.

a Click the sixth-degree polynomial fit in the Table Of Fits pane to view the plots for this fit.

 Compare Fits in Curve Fitter App

2-19

b
In the fit plot, click the Pan button in the axes toolbar and pan until the fit is visible for
several years after the year 2000. The axes limits of the residuals plot adjust accordingly.

c Examine the fit plot. The behavior of the sixth-degree polynomial fit beyond the data range
makes it a poor choice for extrapolation and you can reject this fit.

Evaluate the Numerical Fit Results

When you can no longer eliminate fits by examining them graphically, you should examine the
numerical fit results. The Curve Fitter app displays two types of numerical fit results:

• Goodness-of-fit statistics
• Confidence bounds on the fitted coefficients

The goodness-of-fit statistics help you determine how well the curve fits the data. The confidence
bounds on the coefficients determine their accuracy.

Examine the numerical fit results.

1 For each fit, view the goodness-of-fit statistics in the Results pane.

2 Interactive Fitting

2-20

2 Compare all fits simultaneously in the Table Of Fits pane. Click the column headings to sort by
statistics results.

3 Examine the sum of squares due to error (SSE) and the adjusted R-square statistics to help
determine the best fit. The SSE statistic is the least-squares error of the fit, with a value closer to
zero indicating a better fit. The adjusted R-square statistic is generally the best indicator of the
fit quality when you add additional coefficients to your model.

The largest SSE for exp indicates it is a poor fit, which you already determined by examining the
fit and residuals. The lowest SSE value is associated with poly6. However, the behavior of this fit

 Compare Fits in Curve Fitter App

2-21

beyond the data range makes it a poor choice for extrapolation, so you already rejected this fit by
examining the plots with new axes limits.

The next best SSE value is associated with the fifth-degree polynomial fit, poly5, suggesting it
might be the best fit. However, the SSE and adjusted R-square values for the remaining
polynomial fits are all very close to each other.

4 Resolve the best fit issue by examining the confidence bounds for the remaining fits in the
Results pane. Click a fit in the Table Of Fits pane to open the fit figure (or select it, if the figure
is already open), and view the Results pane. Each fit figure displays the plots for a single fit.

Display the fifth-degree polynomial poly5 and the second-degree polynomial poly2 fit figures
side by side. Examining results side by side can help you assess fits.

a To show two fit figures simultaneously, you can drag and drop the fit figure tabs in the Fits
pane. Alternatively, you can click the Document Actions arrow located to the far right of the
fit figure tabs. Select the Tile All option and specify a 1-by-2 or 2-by-1 layout.

b Compare the coefficients and bounds (p1, p2, and so on) in the Results pane for both fits,
poly5 and poly2. The toolbox calculates 95% confidence bounds on coefficients. The
confidence bounds on the coefficients determine their accuracy. Check the equations in the
Results pane (f(x)=p1*x+p2*x...) to see the model terms for each coefficient. Note that p2
refers to the p2*x term in Poly2 and the p2*x^4 term in Poly5. Do not compare
normalized coefficients directly with non-normalized coefficients.

Tip If you want more space to view and compare plots and results, as shown next, drag
down the Table Of Fits pane. You can also hide the Results pane to show only plots.

2 Interactive Fitting

2-22

The bounds cross zero on the p1, p2, and p3 coefficients for the fifth-degree polynomial. This
means you cannot be sure that these coefficients differ from zero. If the higher order model
terms might have coefficients of zero, they are not helping with the fit, which suggests that
this model overfits the census data.

 Compare Fits in Curve Fitter App

2-23

However, the small confidence bounds do not cross zero on p1, p2, and p3 for the quadratic
fit poly2, indicating that the fitted coefficients are known fairly accurately.

2 Interactive Fitting

2-24

Therefore, after examining both the graphical and numerical fit results, you should select
poly2 as the best fit to extrapolate the census data.

Note The fitted coefficients associated with the constant, linear, and quadratic terms are nearly
identical for each normalized polynomial equation. However, as the polynomial degree increases, the
coefficient bounds associated with the higher degree terms cross zero, which suggests overfitting.

Analyzing Best Fit in the Workspace
You can export the selected fit and the associated fit results to the MATLAB workspace. On the Curve
Fitter tab, in the Export section, click Export and select Export to Workspace. The fit is saved as a
MATLAB object and the associated fit results are saved as structures.

1 Right-click the poly2 fit in the Table Of Fits pane, and select Save "poly2" to Workspace.
Alternatively, click Export and select Export to Workspace. The app opens a dialog box.

 Compare Fits in Curve Fitter App

2-25

2 Click OK to save the fit with the default names.

fittedmodel is saved as a Curve Fitting Toolbox cfit object.

whos fittedmodel

 Name Size Bytes Class Attributes

 fittedmodel 1x1 925 cfit

Examine the cfit object fittedmodel to display the model, the fitted coefficients, and the
confidence bounds for the fitted coefficients.

fittedmodel

 Linear model Poly2:
 fittedmodel(x) = p1*x^2 + p2*x + p3
 Coefficients (with 95% confidence bounds):
 p1 = 0.006541 (0.006124, 0.006958)
 p2 = -23.51 (-25.09, -21.93)
 p3 = 2.113e+04 (1.964e+04, 2.262e+04)

Examine the goodness structure to display goodness-of-fit results.

goodness

goodness =

 struct with fields:

 sse: 159.0293
 rsquare: 0.9987
 dfe: 18
 adjrsquare: 0.9986
 rmse: 2.9724

Examine the output structure to display additional information associated with the fit, such as the
residuals.

output

output =

 struct with fields:

 numobs: 21

2 Interactive Fitting

2-26

 numparam: 3
 residuals: [21×1 double]
 Jacobian: [21×3 double]
 exitflag: 1
 algorithm: 'QR factorization and solve'
 iterations: 1

You can evaluate (interpolate or extrapolate), differentiate, or integrate a fit over a specified data
range with various postprocessing functions.

For example, evaluate fittedmodel at a vector of values to extrapolate to the year 2050.

x = 2000:10:2050;
y = fittedmodel(x)

y =

 274.6221
 301.8240
 330.3341
 360.1524
 391.2790
 423.7137

Plot the fit to the census data and the extrapolated fit values.

plot(fittedmodel,cdate,pop)
hold on
plot(fittedmodel,x,y,"k+")
hold off
legend(["data","","extrapolated data","fitted curve"], ...
 "Location","northwest")

 Compare Fits in Curve Fitter App

2-27

For more examples and instructions for interactive and command-line fit analysis, and a list of all
postprocessing functions, see “Fit Postprocessing”.

For an example reproducing this interactive census data analysis using the command line, see
“Polynomial Curve Fitting” on page 12-2.

Saving Your Work
The Curve Fitter app provides several options for saving your work. You can save one or more fits and
the associated fit results as variables to the MATLAB workspace. You can then use this saved
information for documentation purposes, or to extend your data exploration and analysis. In addition
to saving your work to MATLAB workspace variables, you can:

• Save the current curve fitting session. On the Curve Fitter tab, in the File section, click Save and
select Save Session. The session file contains all the fits and variables in your session and
remembers your layout. See “Save and Reopen Sessions” on page 2-9.

• Generate MATLAB code to recreate a fit and its associated plots. In the Export section, click
Export and select Generate Code. The Curve Fitter app generates code for the currently
selected fit and displays the file in the MATLAB Editor.

You can recreate your fit and plots by calling the file at the command line with your original data
as input arguments. You can also call the file with new data, and automate the process of fitting
multiple data sets. For more information, see “Generating Code from the Curve Fitter App” on
page 7-13.

2 Interactive Fitting

2-28

See Also

Related Examples
• “Create Multiple Fits in Curve Fitter App” on page 2-13
• “Evaluate a Curve Fit” on page 7-16

 Compare Fits in Curve Fitter App

2-29

Surface Fitting to Franke Data
The Curve Fitter app provides some example data generated from Franke's bivariate test function.
This data is suitable for trying various fit settings in the Curve Fitter app. Use the data to create,
compare, and export surface fits.

1 At the MATLAB command line, load the franke data set. The variables x, y, and z appear in the
workspace.

load franke

The example data is generated from Franke's bivariate test function, with added noise and
scaling, to create suitable data for trying various fit settings in the Curve Fitter app. For details
on the Franke function, see [1].

2 Divide the data into fitting and validation data.

xv = x(200:293);
yv = y(200:293);
zv = z(200:293);
x = x(1:199);
y = y(1:199);
z = z(1:199);

3 Fit a surface using the example data.

a Open the Curve Fitter app.

curveFitter

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click
Curve Fitter.

b In the Curve Fitter app, select the data variables. On the Curve Fitter tab, in the Data
section, click Select Data. In the Select Fitting Data dialog box, specify x as the X data
variable, y as the Y data variable, and z as the Z data variable.

Alternatively, you can specify the data variables when you use curveFitter to open the
Curve Fitter app and create a default fit (curveFitter(x,y,z)).

2 Interactive Fitting

2-30

The Curve Fitter app plots the data points as you select variables. When you select x, y, and z,
the app automatically creates a default surface fit. The default fit is an interpolating surface that
passes through the data points.

4 Try a Lowess fit type. On the Curve Fitter tab, in the Fit Type section, click the arrow to open
the gallery. Click Lowess in the Smoothing group.

 Surface Fitting to Franke Data

2-31

The Curve Fitter app creates a local smoothing regression fit.
5 Try altering the fit settings. In the Fit Options pane, change the Span (%) value to 10.

By reducing the span from the default to 10% of the total number of data points, you produce a
surface that follows the data more closely. The span defines the neighboring data points the app
uses to determine each smoothed value.

2 Interactive Fitting

2-32

6 In the Table Of Fits pane, change the Fit name to Smoothing regression.
7 Use the validation data to check that your surface is a good model. In other words, compare the

surface against data not used for fitting.

On the Curve Fitter tab, in the Data section, click Validation Data. In the Select Validation
Data dialog box, select the validation variables in the drop-down lists for X data, Y data, and Z
data: xv, yv, and zv.

Review your selected validation data in the plots and the validation statistics (SSE and RMSE) in
the Results and Table Of Fits panes.

 Surface Fitting to Franke Data

2-33

8 Create another fit by making a copy of the current surface fit. On the Curve Fitter tab, in the
File section, click Duplicate. Alternatively, right-click the fit in the Table Of Fits pane, and then
select Duplicate "Smoothing regression".

The app creates a new fit figure with the same fit settings, data, and validation data. It also adds
a new row to the table of fits at the bottom.

9 Change the fit type and name of the new fit. On the Curve Fitter tab, in the Fit Type section,
click the arrow to open the gallery. Click Polynomial in the Regression Models group.

In the Table Of Fits pane, change the Fit name to Polynomial.
10 In the Fit Options pane, change the X Degree and Y Degree values to 3, to fit a cubic

polynomial in both dimensions.
11 Look at the scales on the x and y axes, and read the warning message in the Results pane.

Equation is badly conditioned. Remove repeated data points or try
centering and scaling.

In the Fit Options pane, select the Center and scale check box to normalize and correct for the
large difference in scales in x and y.

2 Interactive Fitting

2-34

Normalizing the surface fit removes the warning message from the Results pane.
12 Look at the Results pane. You can view the:

• Model equation
• Values of the estimated coefficients
• Goodness-of-fit statistics
• Goodness of validation statistics

 Surface Fitting to Franke Data

2-35

13 To export this fit information to the workspace, click Export and select Export to Workspace in
the Export section of the Curve Fitter tab. Executing this command also exports other
information such as the number of observations and parameters, residuals, and the fitted model.

You can treat the fitted model as a function to make predictions or evaluate the surface at values
of X and Y. For details see “Exporting a Fit to the Workspace” on page 7-14.

2 Interactive Fitting

2-36

14 Display the residuals plot to check the distribution of points relative to the surface. On the Curve
Fitter tab, in the Visualization section, click Residuals Plot.

15 Right-click the residuals plot to select Go to X-Z view. The X-Z view is not required, but the view
makes it easier to see to remove outliers.

16
To remove outliers, click the Exclude outliers button in the axes toolbar.

When you move the mouse cursor to the plot, it changes to a cross-hair to show you are in outlier
selection mode.

a Click a point that you want to exclude in the surface plot or residuals plot. Alternatively, click
and drag to define a rectangle and remove all enclosed points.

The plots display removed points as red crosses.

b If you have Auto selected in the Fit section of the Curve Fitter tab, the app refits the
surface without the removed point. If you have Manual selected instead, you can click Fit to
refit the surface.

c
To return to rotation mode in the plots, click the Exclude outliers button again.

17 Compare your fits side-by-side. Click the Document Actions arrow located to the far right of the
fit figure tabs. Select the Tile All option and specify a 1-by-2 layout.

 Surface Fitting to Franke Data

2-37

18 Review the information in the Table Of Fits pane. Compare the goodness-of-fit statistics for all
fits in your session to determine which is best.

19 To save your interactive surface fitting session, click Save in the File section of the Curve Fitter
tab. You can save and reopen sessions to access multiple fits. The session file contains all the fits
and variables in your session.

20 After interactively creating and comparing fits, you can generate MATLAB code for each fit in
your Curve Fitter app session. On the Curve Fitter tab, in the Export section, click Export and
select Generate Code.

The Curve Fitter app generates code from your session and displays the file in the MATLAB
Editor. The file includes the currently selected fit and its opened plots in your session.

21 Save the file with the default name createFit.m.
22 You can recreate your fit and its plots by calling the file from the command line (with your

original data or new data as input arguments). In this case, your original variables still appear in
the workspace.

• Highlight and evaluate the first line of the file (excluding the word function). Either right-
click and select Evaluate Selection in Command Window, press F9, or copy and paste the
following code to the command line.

2 Interactive Fitting

2-38

[fitresult,gof] = createFit(x,y,z,xv,yv,zv)
• The function creates a figure window for the fit you selected in your session. Observe that the

polynomial fit figure shows both the surface and residuals plots that you created interactively
in the Curve Fitter app.

• If you want, you can use the generated code as a starting point to change the surface fits and
plots to fit your needs. For a list of methods you can use, see sfit.

References
[1] Franke, Richard. “Scattered Data Interpolation: Tests of Some Methods.” Mathematics of

Computation 38, no. 157 (January 1, 1982): 181–200. https://doi.org/10.1090/
S0025-5718-1982-0637296-4.

See Also

Related Examples
• “Create Multiple Fits in Curve Fitter App” on page 2-13
• “Linear and Nonlinear Regression”
• “Interpolation”
• “Smoothing”
• “Fit Postprocessing”

 Surface Fitting to Franke Data

2-39

Programmatic Curve and Surface Fitting

• “Curve and Surface Fitting” on page 3-2
• “Curve and Surface Fitting Objects and Object Functions” on page 3-5

3

Curve and Surface Fitting
In this section...
“Fitting a Curve” on page 3-2
“Fitting a Surface” on page 3-2
“Model Types and Fit Analysis” on page 3-2
“Workflow for Command Line Fitting” on page 3-3

Fitting a Curve
To programmatically fit a curve, follow the steps in this simple example:

1 Load some data.

load hahn1
2 Create a fit using the fit function, specifying the variables and a model type (rat23 in this case

is the model type).

f = fit(temp,thermex,"rat23")
3 Plot your fit and the data.

plot(f,temp,thermex)
f(600)

For an example comparing various polynomial fits, see “Polynomial Curve Fitting” on page 12-2.

Fitting a Surface
To programmatically fit a surface, follow the steps in this simple example:

1 Load some data.

load franke
2 Create a fit using the fit function, specifying the variables and a model type (poly23 in this

case is the model type).

 f = fit([x, y],z,"poly23")
3 Plot your fit and the data.

plot(f,[x,y],z)

For an example fitting custom equations, see “Surface Fitting with Custom Equations to
Biopharmaceutical Data” on page 12-14.

Model Types and Fit Analysis
For details and examples of specific model types and fit analysis, see the following sections:

• “Linear and Nonlinear Regression”
• “Interpolation”

3 Programmatic Curve and Surface Fitting

3-2

• “Smoothing”
• “Fit Postprocessing”

Workflow for Command Line Fitting
Curve Fitting Toolbox software provides a variety of methods for data analysis and modeling.

Tip To quickly generate MATLAB code for curve and surface fits and plots, use the Curve Fitter app
and then generate code. You can transform your interactive analysis of a single data set into a
reusable function for command-line analysis or for batch processing of multiple data sets. For more
details, see “Generate Code and Export Fits to the Workspace” on page 7-13.

To use curve fitting functions for programmatic fitting and analysis, follow this workflow:

1 Import your data into the MATLAB workspace using the load command (if your data has
previously been stored in MATLAB variables) or any of the MATLAB functions for reading data
from particular file types. You might need to reshape your data: see prepareCurveData or
prepareSurfaceData.

2 (Optional) If your data is noisy, you might want to smooth it using the smooth function.
Smoothing is used to identify major trends in the data that can assist you in choosing an
appropriate family of parametric models. If a parametric model is not evident or appropriate,
smoothing can be an end in itself, providing a nonparametric fit of the data.

Note Smoothing estimates the center of the distribution of the response at each predictor. It
invalidates the assumption that errors in the data are independent, and so also invalidates the
methods used to compute confidence and prediction intervals. Accordingly, once a parametric
model is identified through smoothing, the original data should be passed to the fit function.

3 Specify a parametric model for the data—either a Curve Fitting Toolbox library model or a
custom model that you define. You specify the model by passing a model name or expression to
the fit function or (optional) with a fittype object you create with the fittype function.

To view available library models, see “List of Library Models for Curve and Surface Fitting” on
page 4-10.

4 (Optional) You can create a fit options structure for the fit using the fitoptions function. Fit
options specify things like weights for the data, fitting methods, and low-level options for the
fitting algorithm.

5 (Optional) You can create an exclusion rule for the fit using the excludedata function. Exclusion
rules indicate which data values will be treated as outliers and excluded from the fit.

6 Specify the x and y (and z, if surface fitting) data, a model (name, expression or fittype object),
and (optionally) a fit options structure and an exclusion rule, with the fit function to perform
the fit.

The fit function returns a cfit (for curves) or sfit (for surfaces) object that encapsulates the
computed coefficients and the fit statistics. If you want to learn more about the fit objects, see
“Curve and Surface Fitting Objects and Object Functions” on page 3-5.

7 You can postprocess the fit objects returned by the fit function, by passing them to a variety of
functions, such as feval, differentiate, integrate, plot, coeffvalues, probvalues,
confint, and predint.

 Curve and Surface Fitting

3-3

Use the following functions to work with curve and surface fits.

Curve or Surface Fit Method Description
argnames Get input argument names
category Get fit category
coeffnames Get coefficient names
coeffvalues Get coefficient values
confint Get confidence intervals for fit coefficients
dependnames Get dependent variable name
differentiate Differentiate fit
excludedata Exclude data from fit
feval Evaluate model at specified predictors
fittype Construct fittype object
formula Get formula
indepnames Get independent variable name
integrate Integrate curve fit
islinear Determine if model is linear
numargs Get number of input arguments
numcoeffs Get number of coefficients
plot Plot fit
predint Get prediction intervals
probnames Get problem-dependent parameter names
probvalues Get problem-dependent parameter values
quad2d Numerically integrate surface fit (sfit object)
setoptions Set model fit options
type Get name of model

See Also
fit | fittype | fitoptions | excludedata | prepareCurveData | prepareSurfaceData

Related Examples
• “Generate Code and Export Fits to the Workspace” on page 7-13
• “List of Library Models for Curve and Surface Fitting” on page 4-10
• “Polynomial Curve Fitting” on page 12-2
• “Custom Nonlinear Census Fitting” on page 5-20
• “Surface Fitting with Custom Equations to Biopharmaceutical Data” on page 12-14
• “Evaluate a Curve Fit” on page 7-16
• “Evaluate a Surface Fit” on page 7-24
• “Fit Postprocessing”

3 Programmatic Curve and Surface Fitting

3-4

Curve and Surface Fitting Objects and Object Functions
In this section...
“Curve Fitting Objects” on page 3-5
“Curve Fitting Object Functions” on page 3-6
“Surface Fitting Objects and Object Functions” on page 3-8

This topic describes how to create curve and surface fit objects and how to use their object functions
to manipulate the fits. Use the Curve Fitting Toolbox objects and object functions at the MATLAB
command line or to write MATLAB programs for curve and surface fit applications. You can also use
Curve Fitting Toolbox in combination with other MATLAB toolboxes to create curve and surface fit
workflows.

This topic focuses on how to create and manipulate curve and surface fits programmatically.
Alternatively, the Curve Fitter app allows convenient, interactive use of Curve Fitting Toolbox objects
and object functions, without programming. You can select a fit on the Curve Fitter tab, in the Fit
Type section.

Curve Fitting Objects
In MATLAB programming, all workspace variables are objects of a particular class. Familiar examples
of MATLAB classes are double, char, and function_handle. You can also create custom MATLAB
classes, using object-oriented programming.

Object functions are functions that operate exclusively on objects of a particular class. Data types
package together objects and object functions so that the object functions operate exclusively on
objects of their own type, and not on objects of other types. A clearly defined encapsulation of objects
and object functions is the goal of object-oriented programming.

Curve Fitting Toolbox software provides you with new MATLAB data types for performing curve
fitting:

• fittype — Objects allow you to encapsulate information describing a parametric model for your
data. Object functions allow you to access and modify that information.

• cfit and sfit — Two subtypes of fittype, for curves and surfaces. Objects capture information
from a particular fit by assigning values to coefficients, confidence intervals, fit statistics, etc.
Object functions allow you to post-process the fit through plotting, extrapolation, integration, etc.

 Curve and Surface Fitting Objects and Object Functions

3-5

Because cfit is a subtype of fittype, cfit inherits all fittype object functions. In other words,
you can apply fittype object functions to both fittype and cfit objects, but cfit object
functions are used exclusively with cfit objects. The same is true for sfit objects.

As an example, the fittype object function islinear, which determines if a model is linear or
nonlinear, logically applies before or after a fit, that is, to both fittype and cfit objects. On the
other hand, the cfit object functions coeffvalues and confint, which, respectively, return fit
coefficients and their confidence intervals, makes no sense to apply to a general fittype object,
which describes a parametric model with undetermined coefficients.

Curve fitting objects have properties that depend on their type, and also on the particulars of the
model or the fit that they encapsulate. For example, the following code uses the constructor object
functions for the two curve fitting types to create a fittype object f and a cfit object c:

f = fittype('a*x^2+b*exp(n*x)')

f =

 General model:
 f(a,b,n,x) = a*x^2+b*exp(n*x)

c = cfit(f,1,10.3,-1e2)

c =

 General model:
 c(x) = a*x^2+b*exp(n*x)
 Coefficients:
 a = 1
 b = 10.3
 n = -100

Note that the display object function for fittype objects returns only basic information, piecing
together outputs from formula and indepnames.

cfit and fittype objects are evaluated at predictor values x using feval. You can call feval
indirectly using the following functional syntax:

y = cfun(x); % cfit objects
y = ffun(coef1,coef2,...,x); % fittype objects

Curve Fitting Object Functions
Curve fitting object functions allow you to create, access, and modify curve fitting objects. They also
allow you, through object functions like plot and integrate, to perform operations that uniformly
process the entirety of information encapsulated in a curve fitting object.

The object functions listed in the following table are available for all fittype objects, including cfit
objects.

Fit Type Object Function Description
argnames Get input argument names
category Get fit category
coeffnames Get coefficient names

3 Programmatic Curve and Surface Fitting

3-6

Fit Type Object Function Description
dependnames Get dependent variable name
feval Evaluate model at specified predictors
fittype Construct fittype object
formula Get formula
indepnames Get independent variable name
islinear Determine if model is linear
numargs Get number of input arguments
numcoeffs Get number of coefficients
probnames Get problem-dependent parameter names
setoptions Set model fit options
type Get name of model

The object functions listed in the following table are available exclusively for cfit objects.

Curve Fit Object Function Description
cfit Construct cfit object
coeffvalues Get coefficient values
confint Get confidence intervals for fit coefficients
differentiate Differentiate fit
integrate Integrate fit
plot Plot fit
predint Get prediction intervals
probvalues Get problem-dependent parameter values

A complete list of object functions for a curve fitting object can be obtained with the MATLAB
methods command. For example,

f = fittype('a*x^2+b*exp(n*x)');
methods(f)

Methods for class fittype:

argnames dependnames fittype islinear probnames
category feval formula numargs setoptions
coeffnames fitoptions indepnames numcoeffs type

Some of the object functions listed by methods do not appear in the tables above, and do not have
reference pages in the Curve Fitting Toolbox documentation. These additional object functions are
generally low-level operations used by the Curve Fitter app, and not of general interest when writing
curve fitting applications.

There are no global accessor object functions, comparable to getfield and setfield, available for
fittype objects. Access is limited to the object functions listed above. This is because many of the
properties of fittype objects are derived from other properties, for which you do have access. For
example,

 Curve and Surface Fitting Objects and Object Functions

3-7

f = fittype('a*cos(b*x-c)')

f =

 General model:
 f(a,b,c,x) = a*cos(b*x-c)

formula(f)

ans =

 'a*cos(b*x-c)'

argnames(f)

ans =

 4×1 cell array

 {'a'}
 {'b'}
 {'c'}
 {'x'}

You construct the fittype object f by giving the formula, so you do have write access to that basic
property of the object. You have read access to that property through the formula object function.
You also have read access to the argument names of the object, through the argnames object
function. You don't, however, have direct write access to the argument names, which are derived from
the formula. If you want to set the argument names, set the formula.

Surface Fitting Objects and Object Functions
The surface fit object (sfit) stores the results from a surface fitting operation, making it easy to plot
and analyze fits at the command line.

Like cfit objects, sfit objects are a subclass of fittype objects, so they inherit all the same object
functions of fittype listed in “Curve Fitting Object Functions” on page 3-6.

sfit objects also provide object functions exclusively for sfit objects. See sfit.

One way to quickly assemble code for surface fits and plots into useful programs is to generate a file
from a fit in the Curve Fitter app. In this way, you can transform your interactive analysis of a single
data set into a reusable function for command-line analysis or for batch processing of multiple data
sets. You can use the generated file without modification, or edit and customize the code as needed.
See “Generate Code and Export Fits to the Workspace” on page 7-13.

3 Programmatic Curve and Surface Fitting

3-8

Linear and Nonlinear Regression

• “Parametric Fitting” on page 4-2
• “List of Library Models for Curve and Surface Fitting” on page 4-10
• “Polynomial Models” on page 4-14
• “Exponential Models” on page 4-29
• “Fit Fourier Models” on page 4-36
• “Gaussian Models” on page 4-52
• “Power Series” on page 4-56
• “Rational Polynomials” on page 4-60
• “Sum of Sines Models” on page 4-67
• “Weibull Distributions” on page 4-70
• “Introduction to Least-Squares Fitting” on page 4-73

4

Parametric Fitting
In this section...
“Parametric Fitting with Library Models” on page 4-2
“Select Model Type” on page 4-3
“Center and Scale Data” on page 4-4
“Specify Fit Options and Optimized Starting Points” on page 4-5

Parametric Fitting with Library Models
Parametric fitting involves finding coefficients (parameters) for one or more models that you fit to
data. The data is assumed to be statistical in nature and is divided into two components:

data = deterministic component + random component

The deterministic component is given by a parametric model and the random component is often
described as error associated with the data:

data = parametric model + error

The model is a function of the independent (predictor) variable and one or more coefficients. The
error represents random variations in the data that follow a specific probability distribution (usually
Gaussian). The variations can come from many different sources, but are always present at some level
when you are dealing with measured data. Systematic variations can also exist, but they can lead to a
fitted model that does not represent the data well.

The model coefficients often have physical significance. For example, suppose you collected data that
corresponds to a single decay mode of a radioactive nuclide, and you want to estimate the half-life
(T1/2) of the decay. The law of radioactive decay states that the activity of a radioactive substance
decays exponentially in time. Therefore, the model to use in the fit is given by

y = y0e−λt

where y0 is the number of nuclei at time t = 0, and λ is the decay constant. The data can be described
by

data = y0e−λt + error

Both y0 and λ are coefficients that are estimated by the fit. Because T1/2 = ln(2)/λ, the fitted value of
the decay constant yields the fitted half-life. However, because the data contains some error, the
deterministic component of the equation cannot be determined exactly from the data. Therefore, the
coefficients and half-life calculation will have some uncertainty associated with them. If the
uncertainty is acceptable, then you are done fitting the data. If the uncertainty is not acceptable, then
you might have to take steps to reduce it either by collecting more data or by reducing measurement
error and collecting new data and repeating the model fit.

With other problems where there is no theory to dictate a model, you might also modify the model by
adding or removing terms, or substitute an entirely different model.

The Curve Fitting Toolbox parametric library models are described in the following sections.

4 Linear and Nonlinear Regression

4-2

Select Model Type

Select Model Type Interactively

Open the Curve Fitter app by entering curveFitter at the MATLAB command line. Alternatively, on
the Apps tab, in the Math, Statistics and Optimization group, click Curve Fitter.

In the Curve Fitter app, go to the Fit Type section of the Curve Fitter tab. You can select a model
type from the fit gallery. Click the arrow to open the gallery.

This table describes the models that you can fit for curves and surfaces.

Fit Group Fit Category Curves Surfaces
Regression Models Polynomial on page 4-

14
Yes (up to degree 9) Yes (up to degree 5)

Exponential on page 4-
29

Yes No

Fourier on page 4-36 Yes No
Gaussian on page 4-52 Yes No
Power on page 4-56 Yes No
Rational on page 4-60 Yes No
Sum of Sine on page 4-
67

Yes No

Weibull on page 4-70 Yes No
Interpolation Interpolant on page 6-

3
Yes, with methods:

• Nearest neighbor
• Linear
• Cubic
• Shape-preserving

(PCHIP)

Yes, with methods:

• Nearest neighbor
• Linear
• Cubic
• Biharmonic
• Thin-plate spline

Smoothing Smoothing Spline on
page 6-14

Yes No

Lowess on page 6-22 No Yes
Custom Custom Equation on

page 5-2
Yes Yes

 Parametric Fitting

4-3

Fit Group Fit Category Curves Surfaces
“Custom Linear Fitting”
on page 5-7

Yes No

The Results pane displays the model specifications, coefficient values, and goodness-of-fit statistics.

Tip If your fit has problems, messages in the Results pane help you identify better settings.

The Curve Fitter app provides a selection of fit types and settings in the Fit Options pane that you
can change to try to improve your fit. Try the defaults first, and then experiment with other settings.
For more details on how to use the available fit options, see “Specify Fit Options and Optimized
Starting Points” on page 4-5.

You can try a variety of settings for a single fit and you can create multiple fits to compare. When you
create multiple fits in the Curve Fitter app, you can compare different fit types and settings side by
side. For more information, see “Create Multiple Fits in Curve Fitter App” on page 2-13.

Select Model Type Programmatically

You can specify a library model name as a character vector or string scalar when you call the fit
function. For example, you can specify a quadratic poly2 model:

f = fit(x,y,"poly2")

To view all available library model names, see “List of Library Models for Curve and Surface Fitting”
on page 4-10 to view all available library model names.

You can also use the fittype function to construct a fittype object for a library model, and use the
fittype as an input to the fit function.

Use the fitoptions function to find out what parameters you can set, for example:

fitoptions(poly2)

For examples, see the sections for each model type, listed in the table in “Select Model Type
Interactively” on page 4-3. For details on all the functions for creating and analysing models, see
“Curve and Surface Fitting” on page 3-2.

Center and Scale Data
Most fits in the Curve Fitter app provide the Center and scale option in the Fit Options pane. When
you select this option, the app refits the model with the data centered and scaled. At the command
line, use the fitoptions function with the Normalize option set to 'on'.

To alleviate numerical problems with variables of different scales, normalize the input data (also
known as predictor data). For example, suppose your surface fit inputs are engine speed with a range
of 500–4500 r/min and engine load percentage with a range of 0–1. Then, Center and scale
generally improves the fit because of the great difference in scale between the two inputs. However,
if your inputs are in the same units or similar scale (for example, eastings and northings for
geographic data), then Center and scale is less useful. When you normalize inputs with this option,
the values of the fitted coefficients change when compared to the original data.

4 Linear and Nonlinear Regression

4-4

If you are fitting a curve or surface to estimate coefficients, or the coefficients have physical
significance, clear the Center and scale check box. The plots in the Curve Fitter app always use the
original scale, regardless of the Center and scale status.

At the command line, to center and scale the data before fitting, create the options structure by
using the fitoptions function with options.Normal specified as 'on'. Then, use the fit
function with the specified options.

options = fitoptions;
options.Normal = 'on';
options
options =

 basefitoptions with properties:

 Normalize: 'on'
 Exclude: []
 Weights: []
 Method: 'None'

load census
f1 = fit(cdate,pop,"poly3",options)

Specify Fit Options and Optimized Starting Points
Fit Options in Curve Fitter App

In the Curve Fitter app, you can specify fit options interactively in the Fit Options pane. All fits
except Interpolant, Smoothing Spline, and Lowess have configurable fit options. The available
options depend on the fit you select (that is, linear, nonlinear, or nonparametric fit).

• The options described here are available for nonlinear models.
• Lower and Upper coefficient constraints are the only fit options available in the Fit Options pane

for Polynomial fits.
• Nonparametric fits (that is, Interpolant, Smoothing Spline, and Lowess fits) do not have

Advanced Options.

The Fit Options pane for the single-term Exponential fit is shown here. The Coefficient
Constraints values are for the census data.

 Parametric Fitting

4-5

Fitting Method and Algorithm

• Method — Fit method

The app automatically selects the Method value based on the fit you use. For linear and nonlinear
fits, the Method value is LinearLeastSquares and NonlinearLeastSquares, respectively.

• Robust — Option for using the robust least-squares fitting method

• Off — Do not use robust fitting (default).
• On — Fit with the default robust method (bisquare weights).
• LAR — Fit by minimizing the least absolute residuals (LAR).
• Bisquare — Fit by minimizing the summed square of the residuals, and reduce the weight of

outliers using bisquare weights. In most cases, this option is the best choice for robust fitting.
• Algorithm — Algorithm used for fitting

• Trust-Region — This option is the default algorithm and must be used if you specify Lower or
Upper coefficient constraints.

• Levenberg-Marquardt — If the trust-region algorithm does not produce a reasonable fit, and
you do not have coefficient constraints, try the Levenberg-Marquardt algorithm.

Finite Differencing Parameters

• DiffMinChange — Minimum change in coefficients for finite difference Jacobians. The default
value is 10-8.

4 Linear and Nonlinear Regression

4-6

• DiffMaxChange — Maximum change in coefficients for finite difference Jacobians. The default
value is 0.1.

Note that DiffMinChange and DiffMaxChange apply to:

• Any nonlinear custom equation, that is, a nonlinear equation that you write
• Some of the nonlinear equations provided with Curve Fitting Toolbox

DiffMinChange and DiffMaxChange do not apply to any linear equations.

Fit Convergence Criteria

• MaxFunEvals — Maximum number of function (model) evaluations allowed. The default value is
600.

• MaxIter — Maximum number of fit iterations allowed. The default value is 400.
• TolFun — Termination tolerance used on stopping conditions involving the function (model) value.

The default value is 10-6.
• TolX — Termination tolerance used on stopping conditions involving the coefficients. The default

value is 10-6.

Coefficient Parameters

• Coefficients — Symbols for the unknown coefficients to be fitted
• StartPoint — The coefficient starting values. The default values depend on the fit. For Rational,

Weibull, and custom fits, the default values are randomly selected within the range [0 1]. For all
other nonlinear models in the Fit Type gallery, the starting values depend on the data set and are
calculated heuristically.

• Lower — Lower bounds of the fitted coefficients. The app uses these bounds only with the trust
region fitting algorithm. The default lower bounds for most fits in the Fit Options pane are -Inf,
which indicates that the coefficients are unconstrained. However, a few models have finite default
lower bounds. For example, for Gaussian fits, the app constrains the width parameter so that it
cannot be less than 0.

• Upper — Upper bounds of the fitted coefficients. The app uses these bounds only with the trust
region fitting algorithm. The default upper bounds for all fits in the Fit Options pane are Inf,
which indicates that the coefficients are unconstrained.

For more details, see “Optimized Starting Points and Default Constraints” on page 4-7.

For more information about these fit options, see the lsqcurvefit function.

Optimized Starting Points and Default Constraints

The default coefficient starting points and constraints for fits in the Fit Type pane are shown in the
following table. If the starting points are optimized, then they are calculated heuristically based on
the current data set. Random starting points are defined on the interval [0 1] and linear models do
not require starting points. If a model does not have constraints, the coefficients have neither a lower
bound nor an upper bound. You can override the default starting points and constraints by providing
your own values in the Fit Options pane.

Fit Starting Points Constraints
Linear Fitting N/A None

 Parametric Fitting

4-7

Fit Starting Points Constraints
Custom Equation Random None
Exponential Optimized None
Fourier Optimized None
Gaussian Optimized ci > 0
Polynomial N/A None
Power Optimized None
Rational Random None
Sum of Sine Optimized bi > 0
Weibull Random a, b > 0

The Sum of Sine and Fourier fits are particularly sensitive to starting points, and the optimized
values might be accurate for only a few terms in the associated equations.

Specify Fit Options at the Command Line

Create the default fit options structure and set the option to center and scale the data before fitting:

options = fitoptions;
options.Normal = 'on';
options
options =

 basefitoptions with properties:

 Normalize: 'on'
 Exclude: []
 Weights: []
 Method: 'None'

Modifying the default fit options structure is useful when you want to set the Normalize, Exclude,
or Weights fields, and then fit your data using the same options with different fitting methods. For
example:

load census
f1 = fit(cdate,pop,"poly3",options);
f2 = fit(cdate,pop,"exp1",options);
f3 = fit(cdate,pop,"cubicsp",options);

Data-dependent fit options are returned in the third output argument of the fit function. For
example, the smoothing parameter for smoothing spline is data-dependent:

[f,gof,out] = fit(cdate,pop,"smooth");
smoothparam = out.p
smoothparam =
 0.0089

Use fit options to modify the default smoothing parameter for a new fit:

options = fitoptions("Method","Smooth","SmoothingParam",0.0098);
[f,gof,out] = fit(cdate,pop,"smooth",options);

For more details on using fit options, see the fitoptions function.

4 Linear and Nonlinear Regression

4-8

See Also
Apps
Curve Fitter

Functions
fit | fitoptions

Related Examples
• “Create Multiple Fits in Curve Fitter App” on page 2-13
• “List of Library Models for Curve and Surface Fitting” on page 4-10
• “Curve and Surface Fitting” on page 3-2

 Parametric Fitting

4-9

List of Library Models for Curve and Surface Fitting

In this section...
“Use Library Models to Fit Data” on page 4-10
“Library Model Types” on page 4-10
“Model Names and Equations” on page 4-11

Use Library Models to Fit Data
You can use the Curve Fitting Toolbox library of models for data fitting with the fit function. You use
library model names as input arguments in the fit, fitoptions, and fittype functions.

Library Model Types
The following tables describe the library model types for curves and surfaces.

• Use the links in the table for examples and detailed information on each library type.
• If you want a quick reference of model names for input arguments to the fit function, see “Model

Names and Equations” on page 4-11.

Library Model Types for
Curves

Description

distribution Distribution models such as Weibull. See “Weibull Distributions” on
page 4-70.

exponential Exponential function and sum of two exponential functions. See
“Exponential Models” on page 4-29.

fourier Up to eight terms of Fourier series. See “Fit Fourier Models” on page
4-36.

gaussian Sum of up to eight Gaussian models. See “Gaussian Models” on page
4-52.

interpolant Interpolating models, including linear, nearest neighbor, cubic spline,
and shape-preserving cubic spline. See “Nonparametric Fitting” on
page 6-2.

polynomial Polynomial models, up to degree nine. See “Polynomial Models” on
page 4-14.

power Power function and sum of two power functions. See “Power Series”
on page 4-56.

rational Rational equation models, up to 5th degree/5th degree (i.e., up to
degree 5 in both the numerator and the denominator). See “Rational
Polynomials” on page 4-60.

sin Sum of up to eight sin functions. See “Sum of Sines Models” on page
4-67.

spline Cubic spline and smoothing spline models. See “Nonparametric
Fitting” on page 6-2.

4 Linear and Nonlinear Regression

4-10

Library Model Types for
Surfaces

Description

interpolant Interpolating models, including linear, nearest neighbor, cubic spline,
biharmonic, and thin-plate spline interpolation. See “Interpolation
with Curve Fitting Toolbox” on page 6-3.

lowess Lowess smoothing models. See “Lowess Smoothing” on page 6-22.
polynomial Polynomial models, up to degree five. See “Polynomial Models” on

page 4-14.

Model Names and Equations
To specify the model you want to fit, consult the following tables for a model name to use as an input
argument to the fit function. For example, to specify a quadratic curve with model name “poly2” :

f = fit(x, y, 'poly2')

Polynomial Model Names and Equations

Examples of Polynomial Model Names for
Curves

Equations

poly1 Y = p1*x+p2
poly2 Y = p1*x^2+p2*x+p3
poly3 Y = p1*x^3+p2*x^2+...+p4
...etc., up to poly9 Y = p1*x^9+p2*x^8+...+p10

For polynomial surfaces, model names are 'polyij', where i is the degree in x and j is the degree
in y. The maximum for both i and j is five. The degree of the polynomial is the maximum of i and j.
The degree of x in each term will be less than or equal to i, and the degree of y in each term will be
less than or equal to j. See the following table for some example model names and equations, of
many potential examples.

Examples of Polynomial Model Names for
Surfaces

Equations

poly21 Z = p00 + p10*x + p01*y + p20*x^2 +
p11*x*y

poly13 Z = p00 + p10*x + p01*y + p11*x*y +
p02*y^2 + p12*x*y^2 + p03*y^3

poly55 Z = p00 + p10*x + p01*y +...+
p14*x*y^4 + p05*y^5

Distribution Model Name and Equation

Distribution Model Names Equations
weibull Y = a*b*x^(b-1)*exp(-a*x^b)

 List of Library Models for Curve and Surface Fitting

4-11

Exponential Model Names and Equations

Exponential Model Names Equations
exp1 Y = a*exp(b*x)
exp2 Y = a*exp(b*x)+c*exp(d*x)

Fourier Series Model Names and Equations

Fourier Series Model Names Equations
fourier1 Y = a0+a1*cos(x*p)+b1*sin(x*p)
fourier2 Y = a0+a1*cos(x*p)+b1*sin(x*p)

+a2*cos(2*x*p)+b2*sin(2*x*p)
fourier3 Y = a0+a1*cos(x*p)+b1*sin(x*p)

+...+a3*cos(3*x*p)+b3*sin(3*x*p)
...etc., up to fourier8 Y = a0+a1*cos(x*p)+b1*sin(x*p)

+...+a8*cos(8*x*p)+b8*sin(8*x*p)

Where p = 2*pi/(max(xdata)-min(xdata)).

Gaussian Model Names and Equations

Gaussian Model Names Equations
gauss1 Y = a1*exp(-((x-b1)/c1)^2)
gauss2 Y = a1*exp(-((x-b1)/c1)^2)+a2*exp(-

((x-b2)/c2)^2)
gauss3 Y = a1*exp(-((x-b1)/

c1)^2)+...+a3*exp(-((x-b3)/c3)^2)
...etc., up to gauss8 Y = a1*exp(-((x-b1)/

c1)^2)+...+a8*exp(-((x-b8)/c8)^2)

Power Model Names and Equations

Power Model Names Equations
power1 Y = a*x^b
power2 Y = a*x^b+c

Rational Model Names and Equations

Rational models are polynomials over polynomials with the leading coefficient of the denominator set
to 1. Model names are ratij, where i is the degree of the numerator and j is the degree of the
denominator. The degrees go up to five for both the numerator and the denominator.

Examples of Rational Model Names Equations
rat02 Y = (p1)/(x^2+q1*x+q2)
rat21 Y = (p1*x^2+p2*x+p3)/(x+q1)
rat55 Y = (p1*x^5+...+p6)/(x^5+...+q5)

4 Linear and Nonlinear Regression

4-12

Sum of Sine Model Names and Equations

Sum of Sine Model Names Equations
sin1 Y = a1*sin(b1*x+c1)
sin2 Y = a1*sin(b1*x+c1)+a2*sin(b2*x+c2)
sin3 Y = a1*sin(b1*x+c1)+...+a3*sin(b3*x

+c3)
...etc., up to sin8 Y = a1*sin(b1*x+c1)+...+a8*sin(b8*x

+c8)

Spline Model Names

Spline models are supported for curve fitting, not for surface fitting.

Spline Model Names Description
cubicspline Cubic interpolating spline
smoothingspline Smoothing spline

Interpolant Model Names

Type Interpolant Model Names Description
Curves and Surfaces linearinterp Linear interpolation

nearestinterp Nearest neighbor interpolation
cubicinterp Cubic spline interpolation

Curves only pchipinterp Shape-preserving piecewise cubic
Hermite (pchip) interpolation

Surfaces only biharmonicinterp Biharmonic (MATLAB griddata)
interpolation

thinplateinterp Thin-plate spline interpolation

Lowess Model Names

Lowess models are supported for surface fitting, not for curve fitting.

Lowess Model Names Description
lowess Local linear regression
loess Local quadratic regression

 List of Library Models for Curve and Surface Fitting

4-13

Polynomial Models

In this section...
“About Polynomial Models” on page 4-14
“Fit Polynomial Models Interactively” on page 4-15
“Fit Polynomials Using the Fit Function” on page 4-16
“Polynomial Model Fit Options” on page 4-26
“Defining Polynomial Terms for Polynomial Surface Fits” on page 4-27

About Polynomial Models
Polynomial models for curves are given by

y = ∑
i = 1

n + 1
pixn + 1− i

where n + 1 is the order of the polynomial, n is the degree of the polynomial, and 1 ≤ n ≤ 9. The
order gives the number of coefficients to be fit, and the degree gives the highest power of the
predictor variable.

In this guide, polynomials are described in terms of their degree. For example, a third-degree (cubic)
polynomial is given by

γ = p1x3 + p2x2 + p3x + p4

Polynomials are often used when a simple empirical model is required. You can use the polynomial
model for interpolation or extrapolation, or to characterize data using a global fit. For example, the
temperature-to-voltage conversion for a Type J thermocouple in the 0 to 760o temperature range is
described by a seventh-degree polynomial.

Note If you do not require a global parametric fit and want to maximize the flexibility of the fit,
piecewise polynomials might provide the best approach. Refer to “Nonparametric Fitting” on page 6-
2 for more information.

The main advantages of polynomial fits include reasonable flexibility for data that is not too
complicated, and they are linear, which means the fitting process is simple. The main disadvantage is
that high-degree fits can become unstable. Additionally, polynomials of any degree can provide a good
fit within the data range, but can diverge wildly outside that range. Therefore, exercise caution when
extrapolating with polynomials.

When you fit with high-degree polynomials, the fitting procedure uses the predictor values as the
basis for a matrix with very large values, which can result in scaling problems. To handle this, you
should normalize the data by centering it at zero mean and scaling it to unit standard deviation.
Normalize data by selecting the Center and scale check box in the Curve Fitter app.

4 Linear and Nonlinear Regression

4-14

Fit Polynomial Models Interactively
1 Open the Curve Fitter app by entering curveFitter at the MATLAB command line.

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

2 In the Curve Fitter app, select curve or surface data. On the Curve Fitter tab, in the Data
section, click Select Data. Select data variables in the dialog box.

• If you select curve data (X data and Y data, or just Y data against an index), the Curve Fitter
app creates the default curve fit, which is a Polynomial fit.

• If you select surface data (X data, Y data, and Z data), the Curve Fitter app creates the
default surface fit, which is an Interpolant fit. Click the arrow in the Fit Type section to open
the gallery, and click Polynomial in the Regression Models group.

For curve data, the app creates a Polynomial fit for X.

For surface data, the app creates a Polynomial fit for X and Y.

 Polynomial Models

4-15

You can specify the following options in the Fit Options pane:

• The degree for the X and Y variables:

• For curve data, the degree of X can be up to 9.
• For surface data, the degree of X and Y can be up to 5. The degree of the Polynomial fit is the

maximum of X and Y degrees. For more information, see “Defining Polynomial Terms for
Polynomial Surface Fits” on page 4-27.

• The robust linear least-squares fitting method to use (Off, LAR, or Bisquare). For details, see the
Robust name-value argument of the fitoptions function.

• Set bounds or exclude terms. You can exclude any term by setting its bounds to 0. Look in the
Results pane to see the model terms, the values of the coefficients, and the goodness-of-fit
statistics.

Tip If your data variables have very different scales, select and clear the Center and scale check
box to see the difference in the fit. The app displays messages in the Results pane when scaling the
data can improve the fit.

For an example comparing various polynomial fits, see “Compare Fits in Curve Fitter App” on page 2-
17.

Fit Polynomials Using the Fit Function

4 Linear and Nonlinear Regression

4-16

This example shows how to use the fit function to fit polynomials to data. The steps fit and plot
polynomial curves and a surface, specify fit options, return goodness of fit statistics, calculate
predictions, and show confidence intervals.

The polynomial library model is an input argument to the fit and fittype functions. Specify the model
type poly followed by the degree in x (up to 9), or x and y (up to 5). For example, you specify a
quadratic curve with 'poly2' , or a cubic surface with 'poly33' .

Create and Plot a Quadratic Polynomial Curve

Load some data and fit a quadratic polynomial. Specify a quadratic, or second-degree polynomial,
with the string 'poly2' .

load census;
fitpoly2=fit(cdate,pop,'poly2')
% Plot the fit with the plot method.
plot(fitpoly2,cdate,pop)
% Move the legend to the top left corner.
legend('Location','NorthWest');

fitpoly2 =

 Linear model Poly2:
 fitpoly2(x) = p1*x^2 + p2*x + p3
 Coefficients (with 95% confidence bounds):
 p1 = 0.006541 (0.006124, 0.006958)
 p2 = -23.51 (-25.09, -21.93)
 p3 = 2.113e+04 (1.964e+04, 2.262e+04)

 Polynomial Models

4-17

Create a Cubic Curve

Fit a cubic polynomial 'poly3'.

fitpoly3=fit(cdate,pop,'poly3')
plot(fitpoly3,cdate,pop)

Warning: Equation is badly conditioned. Remove repeated data points or try
centering and scaling.

fitpoly3 =

 Linear model Poly3:
 fitpoly3(x) = p1*x^3 + p2*x^2 + p3*x + p4
 Coefficients (with 95% confidence bounds):
 p1 = 3.855e-06 (-4.078e-06, 1.179e-05)
 p2 = -0.01532 (-0.06031, 0.02967)
 p3 = 17.78 (-67.2, 102.8)
 p4 = -4852 (-5.834e+04, 4.863e+04)

4 Linear and Nonlinear Regression

4-18

Specify Fit Options

The cubic fit warns that the equation is badly conditioned, so you should try centering and scaling by
specifying the 'Normalize' option. Fit the cubic polynomial with both center and scale and robust
fitting options. Robust 'on' is a shortcut equivalent to 'Bisquare' , the default method for robust
linear least-squares fitting method.

fit3=fit(cdate, pop,'poly3','Normalize','on','Robust','on')
plot(fit3,cdate,pop)

fit3 =

 Linear model Poly3:
 fit3(x) = p1*x^3 + p2*x^2 + p3*x + p4
 where x is normalized by mean 1890 and std 62.05
 Coefficients (with 95% confidence bounds):
 p1 = -0.4619 (-1.895, 0.9707)
 p2 = 25.01 (23.79, 26.22)
 p3 = 77.03 (74.37, 79.7)
 p4 = 62.81 (61.26, 64.37)

 Polynomial Models

4-19

To find out what parameters you can set for the library model 'poly3' , use the fitoptions function.

fitoptions poly3

ans =

 llsqoptions with properties:

 Lower: []
 Upper: []
 Robust: 'Off'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'LinearLeastSquares'

Get Goodness of Fit Statistics

Specify the 'gof' output argument to get the goodness-of-fit statistics for the cubic polynomial fit.

[fit4, gof]=fit(cdate, pop,'poly3','Normalize','on');
gof

gof =

4 Linear and Nonlinear Regression

4-20

 struct with fields:

 sse: 149.7687
 rsquare: 0.9988
 dfe: 17
 adjrsquare: 0.9986
 rmse: 2.9682

Plot the Residuals to Evaluate the Fit

To plot residuals, specify 'residuals' as the plot type in the plot method.

plot(fit4,cdate, pop,'residuals');

Examine a Fit Beyond the Data Range

By default, the fit is plotted over the range of the data. To plot a fit over a different range, set the x-
limits of the axes before plotting the fit. For example, to see values extrapolated from the fit, set the
upper x-limit to 2050.

plot(cdate, pop, 'o');
xlim([1900, 2050]);
hold on
plot(fit4);
hold off

 Polynomial Models

4-21

Plot Prediction Bounds

To plot prediction bounds, use 'predobs' or 'predfun' as the plot type.

plot(fit4,cdate,pop,'predobs')

4 Linear and Nonlinear Regression

4-22

Plot prediction bounds for the cubic polynomial up to year 2050.

plot(cdate, pop, 'o');
xlim([1900, 2050])
hold on
plot(fit4, 'predobs');
hold off

 Polynomial Models

4-23

Get Confidence Bounds at New Query Points

Evaluate the fit for some new query points.

cdateFuture = (2000:10:2020).';
popFuture = fit4(cdateFuture)

popFuture =

 276.9632
 305.4420
 335.5066

Compute 95% confidence bounds on the prediction for the population in the future, using the predint
method.

ci = predint(fit4, cdateFuture, 0.95, 'observation')

ci =

 267.8589 286.0674
 294.3070 316.5770
 321.5924 349.4208

Plot the predicted future population, with confidence intervals, against the fit and data.

4 Linear and Nonlinear Regression

4-24

plot(cdate, pop, 'o');
xlim([1900, 2040])
hold on
plot(fit4)
h = errorbar(cdateFuture,popFuture,popFuture-ci(:,1),ci(:,2)-popFuture,'.');
hold off
legend('cdate v pop','poly3','prediction','Location','NorthWest')

Fit and Plot a Polynomial Surface

Load some surface data and fit a fourth-degree polynomial in x and y.

load franke;
fitsurface=fit([x,y],z, 'poly44','Normalize','on')
plot(fitsurface, [x,y],z)

 Linear model Poly44:
 fitsurface(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p30*x^3
 + p21*x^2*y + p12*x*y^2 + p03*y^3 + p40*x^4 + p31*x^3*y
 + p22*x^2*y^2 + p13*x*y^3 + p04*y^4
 where x is normalized by mean 1982 and std 868.6
 and where y is normalized by mean 0.4972 and std 0.2897
 Coefficients (with 95% confidence bounds):
 p00 = 0.3471 (0.3033, 0.3909)
 p10 = -0.1502 (-0.1935, -0.107)
 p01 = -0.4203 (-0.4637, -0.377)
 p20 = 0.2165 (0.1514, 0.2815)

 Polynomial Models

4-25

 p11 = 0.1717 (0.1175, 0.2259)
 p02 = 0.03189 (-0.03351, 0.09729)
 p30 = 0.02778 (0.00749, 0.04806)
 p21 = 0.01501 (-0.002807, 0.03283)
 p12 = -0.03659 (-0.05439, -0.01879)
 p03 = 0.1184 (0.09812, 0.1387)
 p40 = -0.07661 (-0.09984, -0.05338)
 p31 = -0.02487 (-0.04512, -0.004624)
 p22 = 0.0007464 (-0.01948, 0.02098)
 p13 = -0.02962 (-0.04987, -0.009366)
 p04 = -0.02399 (-0.0474, -0.0005797)

Polynomial Model Fit Options
All fitting methods have the default properties Normalize, Exclude, Weights, and Method. For an
example, see “Specify Fit Options at the Command Line” on page 4-8.

Polynomial models have the Method property value LinearLeastSquares, and the additional fit
options properties shown in the next table. For details on all fit options, see the fitoptions
reference page.

4 Linear and Nonlinear Regression

4-26

Property Description
Robust Specifies the robust linear least-squares fitting method to use. Values are

'on', 'off', 'LAR', or 'Bisquare'. The default is 'off'.
'LAR' specifies the least absolute residual method and 'Bisquare'
specifies the bisquare weights method. 'on' is equivalent to 'Bisquare',
the default method.

Lower A vector of lower bounds on the coefficients to be fitted. The default value is
an empty vector, indicating that the fit is unconstrained by lower bounds. If
bounds are specified, the vector length must equal the number of
coefficients. Individual unconstrained lower bounds can be specified by -
Inf.

Upper A vector of upper bounds on the coefficients to be fitted. The default value is
an empty vector, indicating that the fit is unconstrained by upper bounds. If
bounds are specified, the vector length must equal the number of
coefficients. Individual unconstrained upper bounds can be specified by
Inf.

Defining Polynomial Terms for Polynomial Surface Fits
You can control the terms to include in the polynomial surface model by specifying the degrees for
the x and y inputs. If i is the degree in x and j is the degree in y, the total degree of the polynomial is
the maximum of i and j. The degree of x in each term is less than or equal to i, and the degree of y in
each term is less than or equal to j. The maximum for both i and j is five.

For example:

poly21 Z = p00 + p10*x + p01*y + p20*x^2 + p11*x*y

poly13 Z = p00 + p10*x + p01*y + p11*x*y + p02*y^2
 + p12*x*y^2 + p03*y^3

poly55 Z = p00 + p10*x + p01*y +...+ p14*x*y^4
 + p05*y^5

For example, if you specify an x degree of 3 and a y degree of 2, the model name is poly32. The
model terms follow the form in this table.

Degree of Term 0 1 2
0 1 y y2

1 x xy xy2

2 x2 x2y N/A
3 x3 N/A N/A

The total degree of the polynomial cannot exceed the maximum of i and j. In this example, terms such
as x3y and x2y2 are excluded because their degrees sum to more than 3. In both cases, the total
degree is 4.

 Polynomial Models

4-27

See Also
Apps
Curve Fitter

Functions
fit | fittype | fitoptions

Related Examples
• Compare Polynomial Fits Interactively on page 2-17
• “Polynomial Curve Fitting” on page 12-2
• Polynomial Curve Fitting in MATLAB
• “Polynomial Model Names and Equations” on page 4-11

4 Linear and Nonlinear Regression

4-28

Exponential Models
In this section...
“About Exponential Models” on page 4-29
“Fit Exponential Models Interactively” on page 4-29
“Fit Exponential Models Using the fit Function” on page 4-31

About Exponential Models
The toolbox provides a one-term and a two-term exponential model as given by

y = aebx

y = aebx + cedx

Exponentials are often used when the rate of change of a quantity is proportional to the initial
amount of the quantity. If the coefficient associated with b and/or d is negative, y represents
exponential decay. If the coefficient is positive, y represents exponential growth.

For example, a single radioactive decay mode of a nuclide is described by a one-term exponential. a is
interpreted as the initial number of nuclei, b is the decay constant, x is time, and y is the number of
remaining nuclei after a specific amount of time passes. If two decay modes exist, then you must use
the two-term exponential model. For the second decay mode, you add another exponential term to the
model.

Examples of exponential growth include contagious diseases for which a cure is unavailable, and
biological populations whose growth is uninhibited by predation, environmental factors, and so on.

Fit Exponential Models Interactively
1 Open the Curve Fitter app by entering curveFitter at the MATLAB command line.

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

2 In the Curve Fitter app, select curve data. On the Curve Fitter tab, in the Data section, click
Select Data. In the Select Fitting Data dialog box, select X data and Y data, or just Y data
against an index.

3 Click the arrow in the Fit Type section to open the gallery, and click Exponential in the
Regression Models group.

The Fit Options pane for the single-term Exponential fit is shown here.

 Exponential Models

4-29

You can specify the following options in the Fit Options pane:

• Choose one or two terms to fit exp1 or exp2. Look in the Results pane to see the model terms,
values of the coefficients, and goodness-of-fit statistics.

• Optionally, in the Advanced Options section, specify coefficient starting values and constraint
bounds appropriate for your data, or change algorithm settings. The coefficient starting values
and constraints shown here are for the census data.

The app calculates optimized start points for Exponential fits, based on the data set. You can
override the start points and specify your own values in the Fit Options pane. For an example
specifying starting values appropriate to the data, see “Gaussian Fitting with an Exponential
Background” on page 5-32.

4 Linear and Nonlinear Regression

4-30

For more information on the settings, see “Specify Fit Options and Optimized Starting Points” on
page 4-5.

Fit Exponential Models Using the fit Function

This example shows how to fit an exponential model to data using the fit function.

The exponential library model is an input argument to the fit and fittype functions. Specify the
model type 'exp1' or 'exp2' .

Fit a Single-Term Exponential Model

Generate data with an exponential trend and then fit the data using a single-term exponential. Plot
the fit and data.

x = (0:0.2:5)';
y = 2*exp(-0.2*x) + 0.1*randn(size(x));
f = fit(x,y,'exp1')

f =
 General model Exp1:
 f(x) = a*exp(b*x)
 Coefficients (with 95% confidence bounds):
 a = 2.021 (1.89, 2.151)
 b = -0.1812 (-0.2104, -0.152)

 Exponential Models

4-31

plot(f,x,y)

Fit a Two-Term Exponential Model

f2 = fit(x,y,'exp2')

f2 =
 General model Exp2:
 f2(x) = a*exp(b*x) + c*exp(d*x)
 Coefficients (with 95% confidence bounds):
 a = 537.7 (-1.307e+10, 1.307e+10)
 b = -0.2573 (-4112, 4112)
 c = -535.7 (-1.307e+10, 1.307e+10)
 d = -0.2576 (-4131, 4130)

plot(f2,x,y)

4 Linear and Nonlinear Regression

4-32

Set Start Points

The toolbox calculates optimized start points for exponential fits based on the current data set. You
can override the start points and specify your own values.

Find the order of the entries for coefficients in the first model (f) by using the coeffnames
function.

coeffnames(f)

ans = 2x1 cell
 {'a'}
 {'b'}

If you specify start points, choose values appropriate to your data. Set arbitrary start points for
coefficients a and b for example purposes.

f = fit(x,y,'exp1','StartPoint',[1,2])

f =
 General model Exp1:
 f(x) = a*exp(b*x)
 Coefficients (with 95% confidence bounds):
 a = 2.021 (1.89, 2.151)
 b = -0.1812 (-0.2104, -0.152)

plot(f,x,y)

 Exponential Models

4-33

Examine Exponential Fit Options

Examine the fit options if you want to modify fit options such as coefficient starting values and
constraint bounds appropriate for your data, or change algorithm settings. For details on these
options, see the table of properties for NonlinearLeastSquares on the fitoptions reference page.

fitoptions('exp1')

ans =
 nlsqoptions with properties:

 StartPoint: []
 Lower: []
 Upper: []
 Algorithm: 'Trust-Region'
 DiffMinChange: 1.0000e-08
 DiffMaxChange: 0.1000
 Display: 'Notify'
 MaxFunEvals: 600
 MaxIter: 400
 TolFun: 1.0000e-06
 TolX: 1.0000e-06
 Robust: 'Off'
 Normalize: 'off'
 Exclude: []
 Weights: []

4 Linear and Nonlinear Regression

4-34

 Method: 'NonlinearLeastSquares'

See Also
Apps
Curve Fitter

Functions
fit | fittype | fitoptions

Related Examples
• “Gaussian Fitting with an Exponential Background” on page 5-32
• “Specify Fit Options and Optimized Starting Points” on page 4-5

 Exponential Models

4-35

Fit Fourier Models
In this section...
“About Fourier Series Models” on page 4-36
“Fit Fourier Model Interactively in Curve Fitter App” on page 4-36
“Fit Fourier Model at the Command Line” on page 4-41

About Fourier Series Models
A Fourier series describes a periodic function as a sum of sine and cosine functions. You can separate
an arbitrary periodic function into simple components by using a Fourier series. These components
are easy to integrate, differentiate, and analyze. For this reason, Fourier series are often used to
approximate periodic signals.

Fourier series are represented in several forms. Curve Fitting Toolbox uses the trigonometric Fourier
series form

y = a0 + ∑
i = 1

n
aicos(iwx) + bisin(iwx)

where a0 models a constant (intercept) term in the data and is associated with the i = 0 cosine term,
w is the fundamental frequency of the signal, and n is the number of terms (harmonics). Curve Fitting
Toolbox supports Fourier series regression for 1 ≤ n ≤ 8.

For more information about Fourier series, refer to “Fourier Analysis and Filtering”.

Fit Fourier Model Interactively in Curve Fitter App

This example shows how to use the Curve Fitter app to fit a Fourier model to data.

Load the sound signal sample data.

load gong.mat

The variables y and Fs contain sound signal and frequency data for a gong ring, respectively. Create
a sound clip by storing the first 1000 elements of y in a vector named gongClip.

gongClip = y(1:1000);

To calculate the time corresponding to each element in gongClip, divide the index of the elements
by Fs.

t = [1:1000]./Fs;

Open the Curve Fitter app from the command line.

curveFitter

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve Fitter.

4 Linear and Nonlinear Regression

4-36

In the Curve Fitter app, select the data variables for the fit. On the Curve Fitter tab, in the Data
section, click Select Data. In the Select Fitting Data dialog box, select gongClip as the Y data
value.

The app plots the data points as you select variables. By default, the app fits a polynomial to the data.
To fit a Fourier model, click Fourier in the Fit Type section of the Curve Fitter tab.

The app fits a single-term Fourier model.

 Fit Fourier Models

4-37

The fitted one-term Fourier model is a periodic function with a simple oscillatory behavior. The
Results panel displays the general equation for the model, fitted coefficient estimates with 95%
confidence intervals, fundamental frequency, and goodness-of-fit statistics.

4 Linear and Nonlinear Regression

4-38

The fitted one-term Fourier model has a root mean square error (RMSE) of 0.1996. To compare the
one-term Fourier model with a Fourier model that has four terms, select 4 for Number of terms in
the Fit Options panel. The app fits a Fourier model with four terms to the data.

 Fit Fourier Models

4-39

The fitted four-term Fourier model has more complex oscillatory behavior than the one-term Fourier
model. An RMSE of 0.1685 for the four-term model indicates that four terms predict the sound data
more accurately than one. However, the plot shows that some of the data points in gongClip are
outside of the range of the four-term model.

Export the fitted four-term Fourier model to the workspace by clicking Export in the Export section
and then selecting Export to Workspace. In the dialog box, uncheck the second and third options.
Store the fit in the variable name in the box next to the first option.

You can listen to the sound data in gongClip by using the function sound.

sound(gongClip,Fs)
pause(2) % Allow gongClip to play before executing next line

4 Linear and Nonlinear Regression

4-40

To get the sound data for the Fourier model approximation of gongClip, use feval to evaluate
gongFourierModel at the times in t. Play the approximated sound data.

gongClipApprox = feval(gongFourierModel,t);
sound(gongClipApprox,Fs)

The two clips have the same approximate average tone. However, the approximated sound data does
not have as many fluctuations in tone as the sound data in gongClip.

Fit Fourier Model at the Command Line

This example shows how to fit a Fourier model to data using the fit function.

Fit Two-Term Fourier Model

Load the El Niño-Southern Oscillation (ENSO) data.

load enso;

The variable pressure contains data for the averaged atmospheric pressure difference between
Easter Island, Chile and Darwin, Australia. The variable month contains data for the month in which
each pressure difference occurred.

Plot pressure against month.

plot(month,pressure)

 Fit Fourier Models

4-41

The pressure data oscillates between 0 and 18, which indicates that it can be described by a Fourier
series.

Fit a two-term Fourier model by using the Fourier library model. Specify the model type as fourier
followed by the number of terms. Save the goodness-of-fit statistics for later comparison.

[f2,gof2] = fit(month,pressure,"fourier2")

f2 =
 General model Fourier2:
 f2(x) = a0 + a1*cos(x*w) + b1*sin(x*w) +
 a2*cos(2*x*w) + b2*sin(2*x*w)
 Coefficients (with 95% confidence bounds):
 a0 = 10.63 (10.23, 11.03)
 a1 = 2.923 (2.27, 3.576)
 b1 = 1.059 (0.01593, 2.101)
 a2 = -0.5052 (-1.086, 0.07532)
 b2 = 0.2187 (-0.4202, 0.8576)
 w = 0.5258 (0.5222, 0.5294)

4 Linear and Nonlinear Regression

4-42

gof2 = struct with fields:
 sse: 1.1230e+03
 rsquare: 0.4279
 dfe: 162
 adjrsquare: 0.4103
 rmse: 2.6329

f2 is a cfit object containing the general formula, coefficient estimates with 95% confidence
bounds, and fundamental frequency for the fit w. The confidence bounds on a2 and b2 cross zero, so
not enough evidence exists to conclude that they differ from zero or that the fitted model differs from
a one-term Fourier model. The root mean square error (RMSE) of 2.6329 is useful for comparing the
accuracy of f2 to the accuracy of other fits.

To calculate the period from the fundamental frequency, use the formula T = 2*pi/w.

w = f2.w

w = 0.5258

T = 2*pi/w

T = 11.9497

The period of the fitted two-term Fourier model is approximately 12 months, or one year.

Plot f2 with a scatter plot of the data.

plot(f2,month,pressure)

 Fit Fourier Models

4-43

The shape of f2 is similar to the shape of a one-term Fourier model, and the oscillation peaks
approximately once every 12 months.

Fit Seven-Term Fourier Model

Fit a seven-term Fourier model to the data. Save the goodness-of-fit statistics.

[f7,gof7] = fit(month,pressure,"fourier7")

f7 =
 General model Fourier7:
 f7(x) =
 a0 + a1*cos(x*w) + b1*sin(x*w) +
 a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +
 a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +
 a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w)
 Coefficients (with 95% confidence bounds):
 a0 = 10.63 (10.28, 10.97)
 a1 = 0.5669 (0.08285, 1.051)
 b1 = 0.1969 (-0.29, 0.6838)
 a2 = -1.203 (-1.687, -0.7189)

4 Linear and Nonlinear Regression

4-44

 b2 = -0.8085 (-1.307, -0.31)
 a3 = 0.9323 (0.4325, 1.432)
 b3 = 0.7599 (0.2622, 1.258)
 a4 = -0.6653 (-1.149, -0.1817)
 b4 = -0.2038 (-0.6995, 0.292)
 a5 = -0.02913 (-0.5129, 0.4547)
 b5 = -0.3701 (-0.8566, 0.1164)
 a6 = -0.04841 (-0.5437, 0.4469)
 b6 = -0.1367 (-0.6286, 0.3552)
 a7 = 2.812 (2.19, 3.433)
 b7 = 1.333 (0.4017, 2.264)
 w = 0.07527 (0.07478, 0.07576)

gof7 = struct with fields:
 sse: 768.3656
 rsquare: 0.6086
 dfe: 152
 adjrsquare: 0.5700
 rmse: 2.2483

f7 contains several coefficients with confidence bounds that cross zero, so not enough evidence
exists to conclude that their corresponding terms increase the accuracy of the fitted Fourier model.
The RMSE of 2.2483 is smaller than the RMSE error of f2, which confirms that the seven-term
Fourier model predicts the pressure more accurately than the two-term Fourier model.

To calculate the period from the fundamental frequency, use the formula T = 2*pi/w to calculate the
period.

w = f7.w

w = 0.0753

T = (2*pi)/w

T = 83.4745

The period of the fitted seven-term Fourier model is approximately 83 months, or roughly seven
years. The amplitude of the fitted coefficients determines which terms contribute most to the
predicted value of the pressure difference.

The period of a sinusoid of the form sin(Ax) or cos(Ax) is given by the formula T = 2*pi/|A|. a7
and b7 are the largest coefficients.

T = 2*pi/(w*7)

T = 11.9249

The period of the terms corresponding to a7 and b7 is approximately 12 months, indicating that the
annual cycle is the strongest.

Use the same formula to calculate the periods of the following terms:

• The terms a1 and b1 have a period of 7 years each.
• The terms a2 and b2 have a period of 3.5 (7/2) years each. The a2 and b2 coefficients have larger

magnitude than a1 and b1, so the 3.5-year cycle contributes more to the predicted value of the
pressure difference than the 7-year cycle.

 Fit Fourier Models

4-45

• The terms a3 and b3 are strong, indicating 2.3-year (7/3) cycle.

Smaller terms such as a6, b6, a5, and b5 are less important for the fit.

Plot f7 with a scatter plot of the data.

plot(f7,month,pressure)

The seven-term Fourier model oscillates in a more complex pattern and captures a wider range of
values in the pressure difference than the one-term Fourier model. The cycle repeats approximately
every 84 months, or 7 years. Typically, the El Niño warming happens at irregular intervals of two to
seven years, and lasts nine months to two years. The average period length is five years. The model
results reflect some of these periods.

Set Start Points

The fit function uses the data input argument to calculate optimized start points for the coefficient
and fundamental frequency calculations. Fourier series models are particularly sensitive to start
points, and the optimized values might be accurate for only a few terms in the associated equations.
You can override the optimized start points by specifying the StartPoint name-value argument.

4 Linear and Nonlinear Regression

4-46

The extreme values in the scatter plot of the data suggest that a four-year cycle might be present. To
confirm this suggestion, set the start point of the fundamental frequency to the value corresponding
to a period of eight years, or 96 months. An eight-year period for the fitted Fourier model increases
the period of the terms a2 and b2 from 3.5 to 4.

w_8 = (2*pi)/96

w_8 = 0.0654

Find the index of the fundamental frequency in the cell vector of f7 coefficient names by using the
coeffnames function.

coeffnames(f7)

ans = 16×1 cell
 {'a0'}
 {'a1'}
 {'b1'}
 {'a2'}
 {'b2'}
 {'a3'}
 {'b3'}
 {'a4'}
 {'b4'}
 {'a5'}
 {'b5'}
 {'a6'}
 {'b6'}
 {'a7'}
 {'b7'}
 {'w' }

The fundamental frequency is in the last entry of the vector of coefficient names. Create a vector of
coefficient values from the coefficients of f7, and replace the value for the fundamental frequency
with the value corresponding to an eight-year period.

coeffs = coeffvalues(f7);
coeffs(:,end) = w_8

coeffs = 1×16

 10.6262 0.5669 0.1969 -1.2031 -0.8085 0.9323 0.7599 -0.6653 -0.2038 -0.0291 -0.3701 -0.0484 -0.1367 2.8120 1.3330 0.0654

Fit a seven-term Fourier model to the pressure difference data using the coefficients with the new
value for the fundamental frequency as the start point. Save the goodness-of-fit statistics.

[f7_8,gof7_8] = fit(month,pressure,"fourier7",StartPoint=coeffs)

f7_8 =
 General model Fourier7:
 f7_8(x) =
 a0 + a1*cos(x*w) + b1*sin(x*w) +
 a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +
 a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +
 a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w)
 Coefficients (with 95% confidence bounds):

 Fit Fourier Models

4-47

 a0 = 10.58 (10.05, 11.1)
 a1 = 0.3286 (-0.4339, 1.091)
 b1 = -0.05917 (-0.7884, 0.6701)
 a2 = -0.8667 (-1.738, 0.004258)
 b2 = 1.094 (0.2819, 1.906)
 a3 = -0.4524 (-1.232, 0.3272)
 b3 = -0.3117 (-1.099, 0.4753)
 a4 = 0.181 (-0.7949, 1.157)
 b4 = 0.5806 (-0.1796, 1.341)
 a5 = 0.03263 (-0.7174, 0.7827)
 b5 = -0.2299 (-0.9767, 0.5169)
 a6 = 0.3726 (-0.39, 1.135)
 b6 = -0.2745 (-1.165, 0.6161)
 a7 = 0.4309 (-0.491, 1.353)
 b7 = -0.3547 (-1.316, 0.6062)
 w = 0.06795 (0.06519, 0.0707)

gof7_8 = struct with fields:
 sse: 1.6851e+03
 rsquare: 0.1416
 dfe: 152
 adjrsquare: 0.0568
 rmse: 3.3296

The coefficients of f7_8 are slightly shifted from the f7 coefficients. The higher RMSE for f7_8
indicates that f7 is a better fit for the data. Plot both fits to visually compare the models.

plot(f7_8,month,pressure)
hold on
plot(f7, 'b')
hold off
legend("Data","f7_8","f7")

4 Linear and Nonlinear Regression

4-48

The plot shows that f7 captures the variation in the pressure difference data more accurately than
f7_8.

Display Fourier Fit Iterations

An alternative to specifying additional options using name-value arguments is to pass a fitoptions
object to the fit function. To view the available options for a Fourier model fit, pass the model name
as an input argument to the fitoptions function.

fitoptions("fourier7")

ans =

 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'NonlinearLeastSquares'
 Robust: 'Off'
 StartPoint: [1×0 double]
 Lower: [1×0 double]
 Upper: [1×0 double]

 Fit Fourier Models

4-49

 Algorithm: 'Trust-Region'
 DiffMinChange: 1.0000e-08
 DiffMaxChange: 0.1000
 Display: 'Notify'
 MaxFunEvals: 600
 MaxIter: 400
 TolFun: 1.0000e-06
 TolX: 1.0000e-06

Create a fitoptions object, and specify to display the output after each iteration.

optionsf7 = fitoptions("fourier7",Display="iter")

options =

 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'NonlinearLeastSquares'
 Robust: 'Off'
 StartPoint: [1×0 double]
 Lower: [1×0 double]
 Upper: [1×0 double]
 Algorithm: 'Trust-Region'
 DiffMinChange: 1.0000e-08
 DiffMaxChange: 0.1000
 Display: 'Iter'
 MaxFunEvals: 600
 MaxIter: 400
 TolFun: 1.0000e-06
 TolX: 1.0000e-06

optionsf7 is a fitoptions object that contains the options for a seven-term Fourier model fit.

To view the iteration steps involved in creating f7, fit another seven-term Fourier model using the
options in optionsf7.

f7_iter = fit(month,pressure,"fourier7",optionsf7)

 Norm of First-order
 Iteration Func-count f(x) step optimality CG-iterations
 0 2 768.41 1.93e+03
 1 4 768.366 2.2176e-05 69.1 0
 2 6 768.366 7.94962e-07 2.48 0
Success, but fitting stopped because change in residuals less than tolerance (TolFun).

f7_iter =
 General model Fourier7:
 f7_iter(x) =
 a0 + a1*cos(x*w) + b1*sin(x*w) +
 a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w) + b3*sin(3*x*w) +
 a4*cos(4*x*w) + b4*sin(4*x*w) + a5*cos(5*x*w) + b5*sin(5*x*w) +
 a6*cos(6*x*w) + b6*sin(6*x*w) + a7*cos(7*x*w) + b7*sin(7*x*w)
 Coefficients (with 95% confidence bounds):
 a0 = 10.63 (10.28, 10.97)
 a1 = 0.5669 (0.08285, 1.051)
 b1 = 0.1969 (-0.29, 0.6838)
 a2 = -1.203 (-1.687, -0.7189)
 b2 = -0.8085 (-1.307, -0.31)

4 Linear and Nonlinear Regression

4-50

 a3 = 0.9323 (0.4325, 1.432)
 b3 = 0.7599 (0.2622, 1.258)
 a4 = -0.6653 (-1.149, -0.1817)
 b4 = -0.2038 (-0.6995, 0.292)
 a5 = -0.02913 (-0.5129, 0.4547)
 b5 = -0.3701 (-0.8566, 0.1164)
 a6 = -0.04841 (-0.5437, 0.4469)
 b6 = -0.1367 (-0.6286, 0.3552)
 a7 = 2.812 (2.19, 3.433)
 b7 = 1.333 (0.4017, 2.264)
 w = 0.07527 (0.07478, 0.07576)

To investigate the Fourier model fit further, you can experiment with specifying different options
available for the NonlinearLeastSquares fitting algorithm. See fitoptions for more
information.

See Also
Apps
Curve Fitter

Functions
fit | fittype | fitoptions

Related Examples
• “Fourier Analysis and Filtering”
• “Custom Nonlinear ENSO Data Analysis” on page 5-23
• “Specify Fit Options and Optimized Starting Points” on page 4-5

 Fit Fourier Models

4-51

Gaussian Models
In this section...
“About Gaussian Models” on page 4-52
“Fit Gaussian Models Interactively” on page 4-52
“Fit Gaussian Models Using the fit Function” on page 4-53

About Gaussian Models
The Gaussian model fits peaks, and is given by

y = ∑
i = 1

n
aie −

x− bi
ci

2

where a is the amplitude, b is the centroid (location), c is related to the peak width, n is the number
of peaks to fit, and 1 ≤ n ≤ 8.

Gaussian peaks are encountered in many areas of science and engineering. For example, Gaussian
peaks can describe line emission spectra and chemical concentration assays.

Fit Gaussian Models Interactively
1 Open the Curve Fitter app by entering curveFitter at the MATLAB command line.

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

2 In the Curve Fitter app, select curve data. On the Curve Fitter tab, in the Data section, click
Select Data. In the Select Fitting Data dialog box, select X data and Y data, or just Y data
against an index.

3 Click the arrow in the Fit Type section to open the gallery, and click Gaussian in the
Regression Models group.

4 Linear and Nonlinear Regression

4-52

You can specify the following options in the Fit Options pane:

• Specify the number of terms as a positive integer in the range [1 8]. Look in the Results pane to
see the model terms, values of the coefficients, and goodness-of-fit statistics.

• Optionally, in the Advanced Options section, specify coefficient starting values and constraint
bounds, or change algorithm settings. The app calculates optimized start points for Gaussian fits,
based on the data set. You can override the start points and specify your own values in the Fit
Options pane.

Gaussian fits have the width parameter c1 constrained with a lower bound of 0. The default lower
bounds for most library models are -Inf, which indicates that the coefficients are unconstrained.

For more information on the settings, see “Specify Fit Options and Optimized Starting Points” on
page 4-5.

Fit Gaussian Models Using the fit Function

This example shows how to use the fit function to fit a Gaussian model to data.

The Gaussian library model is an input argument to the fit and fittype functions. Specify the
model type gauss followed by the number of terms, e.g., 'gauss1' through 'gauss8' .

Fit a Two-Term Gaussian Model

Load some data and fit a two-term Gaussian model.

 Gaussian Models

4-53

[x,y] = titanium;
f = fit(x.',y.','gauss2')

f =
 General model Gauss2:
 f(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2)
 Coefficients (with 95% confidence bounds):
 a1 = 1.47 (1.426, 1.515)
 b1 = 897.7 (897, 898.3)
 c1 = 27.08 (26.08, 28.08)
 a2 = 0.6994 (0.6821, 0.7167)
 b2 = 810.8 (790, 831.7)
 c2 = 592.9 (500.1, 685.7)

plot(f,x,y)

See Also
Apps
Curve Fitter

Functions
fit | fittype | fitoptions

4 Linear and Nonlinear Regression

4-54

Related Examples
• “Gaussian Fitting with an Exponential Background” on page 5-32
• “Specify Fit Options and Optimized Starting Points” on page 4-5

 Gaussian Models

4-55

Power Series
In this section...
“About Power Series Models” on page 4-56
“Fit Power Series Models Interactively” on page 4-56
“Fit Power Series Models Using the fit Function” on page 4-57

About Power Series Models
The toolbox provides a one-term and a two-term power series model as given by

y = axb

y = axb + c

Power series models describe a variety of data. For example, the rate at which reactants are
consumed in a chemical reaction is generally proportional to the concentration of the reactant raised
to some power.

Fit Power Series Models Interactively
1 Open the Curve Fitter app by entering curveFitter at the MATLAB command line.

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

2 In the Curve Fitter app, select curve data. On the Curve Fitter tab, in the Data section, click
Select Data. In the Select Fitting Data dialog box, select X data and Y data, or just Y data
against an index.

3 Click the arrow in the Fit Type section to open the gallery, and click Power in the Regression
Models group.

4 Linear and Nonlinear Regression

4-56

You can specify the following options in the Fit Options pane:

• Specify the number of terms as 1 or 2. Look in the Results pane to see the model terms, values of
the coefficients, and goodness-of-fit statistics.

• Optionally, in the Advanced Options section, specify coefficient starting values and constraint
bounds, or change algorithm settings. The app calculates optimized start points for Power fits,
based on the data set. You can override the start points and specify your own values in the Fit
Options pane.

For more information on the settings, see “Specify Fit Options and Optimized Starting Points” on
page 4-5.

Fit Power Series Models Using the fit Function

This example shows how to use the fit function to fit power series models to data.

The power series library model is an input argument to the fit and fittype functions. Specify the
model type 'power1' or 'power2' .

Fit a Single-Term Power Series Model

load hahn1;
f = fit(temp,thermex,'power1')

f =
 General model Power1:

 Power Series

4-57

 f(x) = a*x^b
 Coefficients (with 95% confidence bounds):
 a = 1.46 (1.224, 1.695)
 b = 0.4094 (0.3825, 0.4363)

plot(f,temp,thermex)

Fit a Two-Term Power Series Model

f = fit(temp,thermex,'power2')

f =
 General model Power2:
 f(x) = a*x^b+c
 Coefficients (with 95% confidence bounds):
 a = -78.61 (-80.74, -76.48)
 b = -0.2349 (-0.271, -0.1989)
 c = 36.9 (33.09, 40.71)

plot(f,temp,thermex)

4 Linear and Nonlinear Regression

4-58

See Also
Apps
Curve Fitter

Functions
fit | fittype | fitoptions

Related Examples
• “Specify Fit Options and Optimized Starting Points” on page 4-5

 Power Series

4-59

Rational Polynomials
In this section...
“About Rational Models” on page 4-60
“Fit Rational Models Interactively” on page 4-60
“Selecting a Rational Fit at the Command Line” on page 4-61
“Example: Rational Fit” on page 4-61

About Rational Models
Rational models are defined as ratios of polynomials and are given by

y =
∑

i = 1

n + 1
pixn + 1− i

xm + ∑
i = 1

m
qixm− 1

where n is the degree of the numerator polynomial and 0 ≤ n ≤ 5, while m is the degree of the
denominator polynomial and 1 ≤ m ≤ 5. Note that the coefficient associated with xm is always 1. This
makes the numerator and denominator unique when the polynomial degrees are the same.

Here rationals are described in terms of the degree of the numerator/the degree of the denominator.
For example, a quadratic/cubic rational equation is given by

y =
p1x2 + p2x + p3

x3 + q1x2 + q2x + q3

Like polynomials, rationals are often used when a simple empirical model is required. The main
advantage of rationals is their flexibility with data that has a complicated structure. The main
disadvantage is that they become unstable when the denominator is around 0. For an example that
uses rational polynomials of various degrees, see “Example: Rational Fit” on page 4-61.

Fit Rational Models Interactively
1 Open the Curve Fitter app by entering curveFitter at the MATLAB command line.

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

2 In the Curve Fitter app, select curve data. On the Curve Fitter tab, in the Data section, click
Select Data. In the Select Fitting Data dialog box, select X data and Y data, or just Y data
against an index.

3 Click the arrow in the Fit Type section to open the gallery, and click Rational in the Regression
Models group.

4 Linear and Nonlinear Regression

4-60

You can specify the following options in the Fit Options pane:

• Specify the numerator degree as a nonnegative integer in the range [0 5] and the denominator
degree as a positive integer in the range [1 5]. Look in the Results pane to see the model terms,
values of the coefficients, and goodness-of-fit statistics.

• Optionally, in the Advanced Options section, specify coefficient starting values and constraint
bounds, or change algorithm settings. The app calculates random start points for rational models,
defined on the interval [0 1]. You can override the start points and specify your own values in the
Fit Options pane.

For more information on the settings, see “Specify Fit Options and Optimized Starting Points” on
page 4-5.

Selecting a Rational Fit at the Command Line
Specify the model type ratij, where i is the degree of the numerator polynomial and j is the degree
of the denominator polynomial. For example, 'rat02', 'rat21' or 'rat55'.

For example, to load some data and fit a rational model:

load hahn1;
f = fit(temp, thermex, 'rat32')
plot(f,temp,thermex)

See “Example: Rational Fit” on page 4-61 to fit this example interactively with various rational
models.

If you want to modify fit options such as coefficient starting values and constraint bounds appropriate
for your data, or change algorithm settings, see the table of additional properties with
NonlinearLeastSquares on the fitoptions reference page.

Example: Rational Fit
This example fits thermal expansion data using a rational fit. The data describes the coefficient of
thermal expansion for copper as a function of temperature in kelvin.

A rational fit is defined as the ratio of polynomials given by:

 Rational Polynomials

4-61

y =
p1xn + p2xn− 1 + ... + pn + 1

xm + q1xm− 1 + ... + qm

where n is the degree of the numerator polynomial and m is the degree of the denominator
polynomial. The rational equations are not associated with physical parameters of the data. Instead,
they provide a simple and flexible empirical model that you can use for interpolation and
extrapolation.

1 Load the thermal expansion data in hahn1. The data set contains a vector of temperatures in
kelvin (temp) and a vector of thermal expansion coefficients for copper (thermex).

load hahn1
2 Open the Curve Fitter app.

curveFitter

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

3 In the Curve Fitter app, select curve data. On the Curve Fitter tab, in the Data section, click
Select Data. In the Select Fitting Data dialog box, specify X data as temp and Y data as
thermex. The Curve Fitter app fits and plots the curve data.

4 Click the arrow in the Fit Type section to open the gallery, and click Rational in the Regression
Models group.

5 Try a quadratic/quadratic rational fit. In the Fit Options pane, select 2 for both Numerator
degree and Denominator degree.

6 Rename the fit. In the Table Of Fits pane, double-click the Fit Name value and enter rat22.
7 In the Visualization section, select Residuals Plot. Examine the data, fit, and residuals.

Observe that the fit misses the data for the smallest and largest predictor values. Additionally,
the residuals show a strong pattern for the entire data set. These observations indicate that a
better fit is possible.

4 Linear and Nonlinear Regression

4-62

8 Try a cubic/cubic rational fit. First duplicate the current fit. On the Curve Fitter tab, in the File
section, click Duplicate. Name the new fit rat33.

9 In the Fit Options pane, select 3 for both Numerator degree and Denominator degree.
Examine the data, fit, and residuals.

Note Your results depend on random start points and might vary from those shown. The fit can
exhibit discontinuities around the zeros of the denominator.

 Rational Polynomials

4-63

10 Look at the Results pane. The message and numerical results indicate that the fit did not
converge.

4 Linear and Nonlinear Regression

4-64

Although the message in the Results pane indicates that you might improve the fit if you
increase the maximum number of iterations, a better choice at this stage of the fitting process is
to use a different rational equation.

11 Try a cubic/quadratic rational fit. First duplicate the current fit. On the Curve Fitter tab, in the
File section, click Duplicate. Name the new fit rat32.

12 In the Fit Options pane, select 3 and 2 for Numerator degree and Denominator degree,
respectively.

13 The data variables have very different scales, so select the Center and scale check box. The
data, fit, and residuals are shown here.

 Rational Polynomials

4-65

The fit behaves well over the entire data range, and the residuals are randomly scattered about
zero. Therefore, you can confidently use this fit for further analysis.

See Also
Apps
Curve Fitter

Functions
fit | fittype | fitoptions

Related Examples
• “Specify Fit Options and Optimized Starting Points” on page 4-5

4 Linear and Nonlinear Regression

4-66

Sum of Sines Models
In this section...
“About Sum of Sines Models” on page 4-67
“Fit Sum of Sine Models Interactively” on page 4-67
“Selecting a Sum of Sine Fit at the Command Line” on page 4-68

About Sum of Sines Models
The sum of sines model fits periodic functions, and is given by

y = ∑
i = 1

n
aisin(bix + ci)

where a is the amplitude, b is the frequency, and c is the phase constant for each sine wave term. n is
the number of terms in the series and 1 ≤ n ≤ 8. This equation is closely related to the Fourier series
described in “Fit Fourier Models” on page 4-36. The main difference is that the sum of sines equation
includes the phase constant, and does not include a constant (intercept) term.

Fit Sum of Sine Models Interactively
1 Open the Curve Fitter app by entering curveFitter at the MATLAB command line.

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

2 In the Curve Fitter app, select curve data. On the Curve Fitter tab, in the Data section, click
Select Data. In the Select Fitting Data dialog box, select X data and Y data, or just Y data
against an index.

3 Click the arrow in the Fit Type section to open the gallery, and click Sum of Sine in the
Regression Models group.

 Sum of Sines Models

4-67

You can specify the following options in Fit Options pane:

• Specify the number of terms as a positive integer in the range [1 8]. Look in the Results pane to
see the model terms, values of the coefficients, and goodness-of-fit statistics.

• Optionally, in the Advanced Options section, specify coefficient starting values and constraint
bounds, or change algorithm settings. The app calculates optimized start points for Sum of Sine
fits, based on the data set. You can override the start points and specify your own values in the Fit
Options pane.

The Sum of Sine fit has a lower bound constraint on bi of 0. The default lower bounds for most
fits in the Fit Type section are -Inf.

For more information on the settings, see “Specify Fit Options and Optimized Starting Points” on
page 4-5.

Selecting a Sum of Sine Fit at the Command Line
Specify the model type sin followed by the number of terms, e.g., 'sin1' to 'sin8'.

For example, to load some periodic data and fit a six-term sum of sine model:

load enso;
f = fit(month, pressure, 'sin6')
plot(f,month,pressure)

4 Linear and Nonlinear Regression

4-68

If you want to modify fit options such as coefficient starting values and constraint bounds appropriate
for your data, or change algorithm settings, see the table of additional properties with
NonlinearLeastSquares on the fitoptions reference page.

See Also
Apps
Curve Fitter

Functions
fit | fittype | fitoptions

Related Examples
• “Specify Fit Options and Optimized Starting Points” on page 4-5

 Sum of Sines Models

4-69

Weibull Distributions
In this section...
“About Weibull Distribution Models” on page 4-70
“Fit Weibull Models Interactively” on page 4-70
“Selecting a Weibull Fit at the Command Line” on page 4-71

About Weibull Distribution Models
The Weibull distribution is widely used in reliability and life (failure rate) data analysis. The toolbox
provides the two-parameter Weibull distribution

y = abxb− 1e−axb

where a is the scale parameter and b is the shape parameter.

Note that there are other Weibull distributions, but you must create a custom equation to use these
distributions:

• A three-parameter Weibull distribution with x replaced by x – c where c is the location parameter
• A one-parameter Weibull distribution where the shape parameter is fixed and only the scale

parameter is fitted.

Curve Fitting Toolbox does not fit Weibull probability distributions to a sample of data. Instead, it fits
curves to response and predictor data such that the curve has the same shape as a Weibull
distribution.

Fit Weibull Models Interactively
1 Open the Curve Fitter app by entering curveFitter at the MATLAB command line.

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

2 In the Curve Fitter app, select curve data. On the Curve Fitter tab, in the Data section, click
Select Data. In the Select Fitting Data dialog box, select X data and Y data, or just Y data
against an index.

3 Click the arrow in the Fit Type section to open the gallery, and click Weibull in the Regression
Models group.

4 Linear and Nonlinear Regression

4-70

There are no fit settings to configure in the Fit Options pane.

Optionally, in the Advanced Options section, specify coefficient starting values and constraint
bounds, or change algorithm settings. The app calculates random start points for Weibull fits,
defined on the interval [0 1]. You can override the start points and specify your own values in the Fit
Options pane.

For more information on the settings, see “Specify Fit Options and Optimized Starting Points” on
page 4-5.

Selecting a Weibull Fit at the Command Line
Specify the model type weibull.

For example, to load some example data measuring blood concentration of a compound against time,
and fit and plot a Weibull model specifying a start point:

time = [0.1; 0.1; 0.3; 0.3; 1.3; 1.7; 2.1;...
 2.6; 3.9; 3.9; ...
 5.1; 5.6; 6.2; 6.4; 7.7; 8.1; 8.2;...
 8.9; 9.0; 9.5; ...
 9.6; 10.2; 10.3; 10.8; 11.2; 11.2; 11.2;...
 11.7; 12.1; 12.3; ...
 12.3; 13.1; 13.2; 13.4; 13.7; 14.0; 14.3;...
 15.4; 16.1; 16.1; ...
 16.4; 16.4; 16.7; 16.7; 17.5; 17.6; 18.1;...
 18.5; 19.3; 19.7;];

 Weibull Distributions

4-71

conc = [0.01; 0.08; 0.13; 0.16; 0.55; 0.90; 1.11;...
 1.62; 1.79; 1.59; ...
 1.83; 1.68; 2.09; 2.17; 2.66; 2.08; 2.26;...
 1.65; 1.70; 2.39; ...
 2.08; 2.02; 1.65; 1.96; 1.91; 1.30; 1.62;...
 1.57; 1.32; 1.56; ...
 1.36; 1.05; 1.29; 1.32; 1.20; 1.10; 0.88;...
 0.63; 0.69; 0.69; ...
 0.49; 0.53; 0.42; 0.48; 0.41; 0.27; 0.36;...
 0.33; 0.17; 0.20;];

f=fit(time, conc/25, 'Weibull', ...
'StartPoint', [0.01, 2])
plot(f,time,conc/25, 'o');

If you want to modify fit options such as coefficient starting values and constraint bounds appropriate
for your data, or change algorithm settings, see the table of additional properties with
NonlinearLeastSquares on the fitoptions reference page.

Appropriate start point values and scaling conc/25 for the two-parameter Weibull model were
calculated by fitting a 3 parameter Weibull model using this custom equation:

f=fit(time, conc, ' c*a*b*x^(b-1)*exp(-a*x^b)', 'StartPoint', [0.01, 2, 5])

f =
 General model:
 f(x) = c*a*b*x^(b-1)*exp(-a*x^b)
 Coefficients (with 95% confidence bounds):
 a = 0.009854 (0.007465, 0.01224)
 b = 2.003 (1.895, 2.11)
 c = 25.65 (24.42, 26.89)

This Weibull model is defined with three parameters: the first scales the curve along the horizontal
axis, the second defines the shape of the curve, and the third scales the curve along the vertical axis.
Notice that while this curve has almost the same form as the Weibull probability density function, it is
not a density because it includes the parameter c, which is necessary to allow the curve's height to
adjust to data.

See Also
Apps
Curve Fitter

Functions
fit | fittype | fitoptions

Related Examples
• “Specify Fit Options and Optimized Starting Points” on page 4-5

4 Linear and Nonlinear Regression

4-72

Introduction to Least-Squares Fitting
In this section...
“Calculating Residuals” on page 4-73
“Error Assumptions” on page 4-74
“Linear Least Squares” on page 4-74
“Weighted Least Squares” on page 4-75
“Robust Least Squares” on page 4-76
“Nonlinear Least Squares” on page 4-77

A regression model relates response data to predictor data with one or more coefficients. A fitting
method is an algorithm that calculates the model coefficients given a set of input data. Curve Fitting
Toolbox uses least-squares fitting methods to estimate the coefficients of a regression model.

Curve Fitting Toolbox supports the following least-squares fitting methods:

• Linear least-squares
• Weighted least-squares
• Robust least-squares
• Nonlinear least-squares

The type of regression model and the properties of the input data determine which least-squares
method is most appropriate for estimating model coefficients.

Calculating Residuals
A residual for a data point is the difference between the value of the observed response and the
response estimate returned by the fitted model. The formula for calculating the vector of estimated
responses is

y = f (X, b)

where

• y is an n-by-1 vector of response estimates
• f is the general form of the regression model.
• X is an n-by-m design matrix.
• b is an m-by-1 vector of fitted model coefficients.

A least-squares fitting method calculates model coefficients that minimize the sum of squared errors
(SSE), which is also called the residual sum of squares. Given a set of n data points, the residual for
the ith data point ri is calculated with the formula

ri = yi− y i

where yi is the ith observed response value and ŷi is the ith fitted response value. The SSE is given by

SSE = ∑
i = 1

n
ri

2 = ∑
i = 1

n
yi− y i

2

 Introduction to Least-Squares Fitting

4-73

Error Assumptions
The difference between the observed and true values for a data point is called the error. Because it
cannot be observed directly, the error for a data point is approximated with the data point's residual.

Least-squares fitting methods are most accurate for data sets that do not contain a large number of
random errors with extreme values. Statistical results, such as confidence and prediction bounds,
assume that errors are normally distributed. Data fitting techniques typically make two important
assumptions about the error in data containing random variations:

• The error exists only in the response data, and not in the predictor data.
• The errors are random and follow a normal distribution with zero mean and constant variance.

Data fitting techniques assume that errors are normally distributed because the normal distribution
often provides an adequate approximation to the distribution of many measured quantities. Although
the least-squares fitting method does not assume normally distributed errors when calculating
parameter estimates, the method works best for data that does not contain a large number of random
errors with extreme values. The normal distribution is one of the probability distributions in which
extreme random errors are uncommon. However, statistical results, such as confidence and
prediction bounds require normally distributed errors for their validity.

If the mean of the residuals is nonzero, check whether the residuals are influenced by the choice of
model or predictor variables. For fitting methods other than weighted least squares, Curve Fitting
Toolbox additionally assumes that the errors have constant variance across the values of the predictor
variables. Residuals that do not have a constant variance indicate that the fit might be influenced by
poor quality data.

Linear Least Squares
Curve Fitting Toolbox uses the linear least-squares method to fit a linear model to data. A linear
model is defined as an equation that is linear in its coefficients. Use the linear least-squares fitting
method when the data contains few extreme values, and the variance of the error is constant across
predictor variables.

A linear model of degree m – 1 has the matrix form

y = Xβ + ε

where

• y is an n-by-1 vector of response data.
• β is an m-by-1 vector of unknown coefficients.
• X is an n-by-m design matrix containing m – 1 predictor columns. Each predictor variable

corresponds to a column in X. The last column in X is a column of ones representing the model's
constant term.

• ε is an n-by-1 vector of unknown errors.

For example, a first-degree polynomial of the form

y = p1x + p2

is given by

4 Linear and Nonlinear Regression

4-74

y1
y2
y3
.
.
.

yn

=

x1 1
x2 1
x3 1

.

.

.
xn 1

×
p1
p2

You cannot calculate β directly because ε is unknown. The linear least-squares fitting method
approximates β by calculating a vector of coefficients b that minimizes the SSE. Curve Fitting Toolbox
calculates b by solving a system of equations called the normal equations. The normal equations are
given by the formula

(XTX)b = XTy

where XT is the transpose of the matrix X. The formula for b is then

b = (XTX)−1XTy

To solve the system of simultaneous linear equations for unknown coefficients, use the MATLAB
backslash operator (mldivide). Because inverting XTX can lead to unacceptable rounding errors, the
backslash operator uses QR decomposition with pivoting, which is a stable algorithm numerically. See
“Arithmetic Operations” for more information about the backslash operator and QR decomposition. To
calculate the vector of fitted response values ŷ, substitute b into the model formula.

y = Xb

For an example of fitting a polynomial model using the linear least-squares fitting method, see “Fit
Polynomial Model to Data” on page 12-173.

Weighted Least Squares
If the response data error does not have constant variance across the values of the predictor data, the
fit can be influenced by poor quality data. The weighted least-squares fitting method uses scaling
factors called weights to influence the effect of a response value on the calculation of model
coefficients. Use the weighted least-squares fitting method if the weights are known, or if the weights
follow a particular form.

The weighted least-squares fitting method introduces weights in the formula for the SSE, which
becomes

SSE = ∑
i = 1

n
wi yi− y i

2

where wi are the weights. The weights you supply should transform the response variances to a
constant value. If you know the variances σi

2 of the measurement errors in your data, then the

weights are given by wi = 1
σi

2 . Alternatively, you can use the residuals to estimate the error in the

calculation of the σi
2.

 Introduction to Least-Squares Fitting

4-75

The weighted formula for the SSE yields the formula for b

b = (XTWX)−1XTWy

where W is a diagonal matrix such that Wii = wi.

For an example of fitting a polynomial model using the weighted least-squares fitting method, see
“Improve Model Fit with Weights” on page 12-175.

Robust Least Squares
Extreme values in the response data are called outliers. Linear least-squares fitting is sensitive to
outliers because squaring the residuals magnifies the effects of these data points in the SSE
calculation. Use the robust least-squares fitting method if your data contains outliers.

Curve Fitting Toolbox provides the following robust least-squares fitting methods:

• Least absolute residuals (LAR) — This method finds a curve that minimizes the absolute residuals
rather than the squared differences. Therefore, extreme values have less influence on the fit.

• Bisquare weights — This method minimizes a weighted sum of squares, where the weight given to
each data point depends on how far the point is from a fitted curve. Points near the fitted curve
get full weight. Points farther from the curve get reduced weight. Points that are farther from the
curve than expected by random chance get zero weight.

The bisquare weights method is often preferred over LAR because it simultaneously seeks to find
a curve that fits the bulk of the data using the least-squares approach while minimizing the effect
of outliers.

Robust bisquare weights fitting uses the iteratively reweighted least-squares algorithm, which follows
these steps:

1 Fit the model by weighted least squares. For the first iteration, the algorithm uses weights equal
to one unless you specify the weights.

2 Calculate the adjusted residuals and standardize them. The adjusted residuals are given by

rad j =
ri

1− hi

where hi are parameters that reduce the weight of data points that are far from the fitted curve.
The standardized adjusted residuals are given by

u =
rad j
Ks

where K=4.685 is a tuning constant, and s is the robust standard deviation given by dividing the
median absolute deviation (MAD) of the residuals by 0.6745.

Calculate the robust weights as a function of u. The bisquare weights are given by

wi =
1− (ui)2

2 ui < 1

0 ui ≥ 1

4 Linear and Nonlinear Regression

4-76

3 If the fit converges, exit the iteration process. Otherwise, perform the next iteration of the
bisquare weights fitting method by returning to step 1.

Instead of minimizing the effects of outliers by using robust least-squares fitting, you can mark data
points to be excluded from the fit. See “Remove Outliers” on page 7-8 for more information.

For an example of fitting a polynomial model using the robust least-squares fitting method, see
“Compare Robust Fitting Methods” on page 12-179.

Nonlinear Least Squares
Curve Fitting Toolbox uses the nonlinear least-squares method to fit a nonlinear model to data. A
nonlinear model is defined as an equation that is nonlinear in the coefficients, or has a combination of
linear and nonlinear coefficients. Exponential, Fourier, and Gaussian models are nonlinear, for
example.

A nonlinear model has the matrix form

y = f (X, β) + ε

where

• y is an n-by-1 vector of response data.
• β is an m-by-1 vector of coefficients.
• X is the n-by-m design matrix.
• f is a nonlinear function of β and X.
• ε is an n-by-1 vector of unknown errors.

In a nonlinear model, unlike a linear model, the approximate coefficients b cannot be calculated using
matrix techniques. Curve Fitting Toolbox uses the following iterative approach to calculate the
coefficients:

1 Initialize the coefficient values. For some nonlinear models, the toolbox provides a heuristic
approach for calculating initial values. For other models, the coefficients are initialized with
random values in the interval [0,1].

2 Calculate the fitted curve for the current set of coefficients. The fitted response value ŷ is given
by y = f (X, b) and is calculated using the Jacobian of f (X, β). The Jacobian of f (X, β) is defined as
a matrix of partial derivatives taken with respect to the coefficients in β.

3 Adjust the coefficients using one of these nonlinear least-squares algorithms:

• Trust-region — This algorithm is the default. You must use the trust-region algorithm if you
specify coefficient constraints. The trust-region algorithm can solve difficult nonlinear
problems more efficiently than other algorithms and is an improvement over the popular
Levenberg-Marquardt algorithm.

• Levenberg-Marquardt — If the trust-region algorithm does not produce a reasonable fit, and
you do not have coefficient constraints, use the Levenberg-Marquardt algorithm.

4 If the fit satisfies the specified convergence criteria, exit the iteration. Otherwise, return to step
2.

Curve Fitting Toolbox supports the use of weights and robust fitting to calculate the SSE for
nonlinear models.

 Introduction to Least-Squares Fitting

4-77

The accuracy of a nonlinear model's predictions depends on the type of the model, the convergence
criteria, the data set, and the initial values assigned to the coefficients. If the default options do not
yield a reasonable fit, experiment with different starting values for the model coefficients, nonlinear
least-squares algorithms, and convergence criteria. In general, begin by modifying the coefficient
starting values, because nonlinear model fits are particularly sensitive to the starting values for the
model coefficients. See “Specify Fit Options and Optimized Starting Points” on page 4-5 for more
information about modifying the default options.

For an example of fitting an exponential model using the nonlinear least-squares fitting method, see
“Fit Exponential Model to Data” on page 12-185.

References
[1] DuMouchel, W. H., and F. L. O'Brien. “Integrating a Robust Option into a Multiple Regression

Computing Environment.” Computer Science and Statistics: Proceedings of the 21st
Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989.

[2] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted Least-Squares.”
Communications in Statistics: Theory and Methods, A6, 1977, pp. 813–827.

See Also
Apps
Curve Fitter

Functions
fit | fitoptions

More About
• “Specify Fit Options and Optimized Starting Points” on page 4-5
• “Remove Outliers” on page 7-8
• “Fit Polynomial Model to Data” on page 12-173
• “Improve Model Fit with Weights” on page 12-175
• “Compare Robust Fitting Methods” on page 12-179
• “Fit Exponential Model to Data” on page 12-185

4 Linear and Nonlinear Regression

4-78

Custom Linear and Nonlinear Regression

• “Custom Models” on page 5-2
• “Custom Linear Fitting” on page 5-7
• “Custom Nonlinear Census Fitting” on page 5-20
• “Custom Nonlinear ENSO Data Analysis” on page 5-23
• “Gaussian Fitting with an Exponential Background” on page 5-32
• “Surface Fitting to Biopharmaceutical Data” on page 5-35

5

Custom Models
In this section...
“Custom Models vs. Library Models” on page 5-2
“Selecting a Custom Equation Fit Interactively” on page 5-2
“Selecting a Custom Equation Fit at the Command Line” on page 5-5

Custom Models vs. Library Models
If the Curve Fitting Toolbox library does not contain a desired parametric equation, you can create
your own custom equation. Library models, however, offer the best chance for rapid convergence.
This is because:

• For most library models, the toolbox calculates optimal default coefficient starting points. For
custom models, the toolbox chooses random default starting points on the interval [0,1]. You need
to find suitable start points for custom models.

• Library models use an analytic Jacobian. Custom models use finite differencing.

Linear and Nonlinear Fitting

You can create custom general equations with the Custom Equation fit type. General models are
nonlinear combinations of (perhaps nonlinear) terms. They are defined by equations that might be
nonlinear in the parameters. The custom equation fit uses the nonlinear least-squares fitting
procedure.

You can define a custom linear equation using the Custom Equation fit type, though the nonlinear
fitting is less efficient and usually slower than linear least-squares fitting.

• If you don’t know if your equation can be expressed as a set of linear functions, then choose
Custom Equation. You might need to search for suitable start points.

• If you need linear least-squares fitting for custom equations, choose the Linear Fitting model
type instead. See “Custom Linear Fitting” on page 5-7.

Selecting a Custom Equation Fit Interactively
In the Curve Fitter app, on the Curve Fitter tab, in the Fit Type section, click the arrow to open the
gallery. In the fit gallery, click Custom Equation in the Custom group.

In the Fit Options pane, use the custom equation fit to define your own equations. An example
custom equation appears when you click Custom Equation, as shown here for curve data.

5 Custom Linear and Nonlinear Regression

5-2

If you have surface data, the example custom equation uses both x and y.

1 You can edit x, y, and z to any valid variable names.
2 In the lower box, edit the example to define your own custom equation. You can enter any valid

MATLAB expression in terms of your variable names. You can specify a function or script name
(see “Fitting a Curve Defined by a File in the Curve Fitter App” on page 5-4).

3 Click Advanced Options if you want to specify start points or bounds. By default, the starting
values are randomly selected on the interval [0,1] and are unconstrained. You might need to
search for suitable start points and bounds. For an example, see “Custom Nonlinear ENSO Data
Analysis” on page 5-23.

 Custom Models

5-3

If you set fit options and then alter other fit settings, the app remembers your choices for lower
and upper bounds and start points, if possible. For custom equations, the Curve Fitter app always
remembers user values. However, for many library models, if you change fit settings, then the
app automatically calculates new best values for start points or lower bounds.

You can save your custom equations as part of your saved Curve Fitter app sessions.

Your function can execute a number of times, both during fitting and during preprocessing before
fitting. Be aware this may be time-consuming if you are using functions with side effects such as
writing data to a file, or displaying diagnostic information to the Command Window.

For examples, see:

• “Custom Nonlinear ENSO Data Analysis” on page 5-23
• “Gaussian Fitting with an Exponential Background” on page 5-32
• “Surface Fitting to Biopharmaceutical Data” on page 5-35
• “Custom Linear Fitting” on page 5-7

Fitting a Curve Defined by a File in the Curve Fitter App

This example shows how to provide a function or script name as the fitting model in the Curve Fitter
app. Define a function in a file and use it to fit a curve.

1 Define a function in a MATLAB file.

function y = piecewiseLine(x,a,b,c,d,k)
% PIECEWISELINE A line made of two pieces
% that is not continuous.

y = zeros(size(x));

% This example includes a for-loop and if statement
% purely for example purposes.
for i = 1:length(x)
 if x(i) < k
 y(i) = a + b.* x(i);
 else
 y(i) = c + d.* x(i);
 end
end
end

Save the file on the MATLAB path.
2 Define some data and open the Curve Fitter app.

x = [0.81;0.91;0.13;0.91;0.63;0.098;0.28;0.55; ...
 0.96;0.96;0.16;0.97;0.96];
y = [0.17;0.12;0.16;0.0035;0.37;0.082;0.34;0.56; ...
 0.15;-0.046;0.17;-0.091;-0.071];

curveFitter
3 In the Curve Fitter app, on the Curve Fitter tab, in the Data section, click Select Data. In the

Select Fitting Data dialog box, select x and y in the X data and Y data lists, respectively. Enter
Piecewise Function as the fit name.

5 Custom Linear and Nonlinear Regression

5-4

4 Use your piecewiseLine function in the Curve Fitter app. On the Curve Fitter tab, in the Fit
Type section, click the arrow to open the gallery. In the fit gallery, click Custom Equation in the
Custom group. In the Fit Options pane, enter your function expression in the custom equation
text box. The function takes x data and some parameters for fitting.

piecewiseLine(x,a,b,c,d,k)

The Curve Fitter app creates a fit using your function.

Tip If you want to use the same function for fitting at the command line, use the same expression as
an input to fittype, and then use the fittype as an input to fit:

ft = fittype("piecewiseLine(x,a,b,c,d,k)");
f = fit(x,y,ft)

For more examples, see the fit function.

Selecting a Custom Equation Fit at the Command Line
To fit custom models, either:

• Supply a custom model to the fit function in the fitType input argument. You can use a
MATLAB expression (including any .m file), a cell array or string array of linear model terms, or
an anonymous function.

• Create a fittype object with the fittype function to use as an input argument for the fit
function.

This example loads some data and uses a custom equation defining a Weibull model as an input to the
fit function:
time = [0.1; 0.1; 0.3; 0.3; 1.3; 1.7; 2.1; 2.6; 3.9; 3.9; ...
 5.1; 5.6; 6.2; 6.4; 7.7; 8.1; 8.2; 8.9; 9.0; 9.5; ...
 9.6; 10.2; 10.3; 10.8; 11.2; 11.2; 11.2; 11.7; 12.1; 12.3; ...

 Custom Models

5-5

 12.3; 13.1; 13.2; 13.4; 13.7; 14.0; 14.3; 15.4; 16.1; 16.1; ...
 16.4; 16.4; 16.7; 16.7; 17.5; 17.6; 18.1; 18.5; 19.3; 19.7;];
conc = [0.01; 0.08; 0.13; 0.16; 0.55; 0.90; 1.11; 1.62; 1.79; 1.59; ...
 1.83; 1.68; 2.09; 2.17; 2.66; 2.08; 2.26; 1.65; 1.70; 2.39; ...
 2.08; 2.02; 1.65; 1.96; 1.91; 1.30; 1.62; 1.57; 1.32; 1.56; ...
 1.36; 1.05; 1.29; 1.32; 1.20; 1.10; 0.88; 0.63; 0.69; 0.69; ...
 0.49; 0.53; 0.42; 0.48; 0.41; 0.27; 0.36; 0.33; 0.17; 0.20;];

f = fit(time,conc,"c*a*b*x^(b-1)*exp(-a*x^b)","StartPoint",[0.01 2 5])
plot(f,time,conc)

To define a custom model using fittype, use the form:

f = fittype(expr)

which constructs a custom model fittype object for the MATLAB expression contained in the
character vector, string scalar, cell array, string array, or anonymous function expr.

See the fittype reference page for details on:

• Specifying dependent and independent variables, problem parameters, and coefficients using
fittype.

• Specifying a cell array or string array of terms to use a linear fitting algorithm for your custom
equation. If expr is a string or anonymous function, then the toolbox uses a nonlinear fitting
algorithm.

For more details on linear fitting, see “Selecting Linear Fitting at the Command Line” on page 5-
8.

• Examples of linear and nonlinear custom models.

For a step-by-step example, see “Custom Nonlinear Census Fitting” on page 5-20.

5 Custom Linear and Nonlinear Regression

5-6

Custom Linear Fitting
In this section...
“About Custom Linear Models” on page 5-7
“Selecting a Linear Fitting Custom Fit Interactively” on page 5-7
“Selecting Linear Fitting at the Command Line” on page 5-8
“Fit Custom Linear Legendre Polynomials” on page 5-9

About Custom Linear Models
In the Curve Fitter app, you can use the Custom Equation fit to define your own linear or nonlinear
equations. The custom equation fit uses the nonlinear least-squares fitting procedure.

You can define a custom linear equation in Custom Equation, but the nonlinear fitting is less
efficient and usually slower than linear least-squares fitting. If you need linear least-squares fitting
for custom equations, select Linear Fitting instead. Linear models are linear combinations of
(perhaps nonlinear) terms. They are defined by equations that are linear in the parameters.

Tip If you need linear least-squares fitting for custom equations, choose Linear Fitting. If you don’t
know if your equation can be expressed as a set of linear functions, then choose Custom Equation
instead. See “Selecting a Custom Equation Fit Interactively” on page 5-2.

Selecting a Linear Fitting Custom Fit Interactively
1 In the Curve Fitter app, select some curve data. On the Curve Fitter tab, in the Data section,

click Select Data. In the Select Fitting Data dialog box, select X data and Y data values.

Curve Fitter creates a default polynomial fit.
2 Change the model type. On the Curve Fitter tab, in the Fit Type section, click the arrow to open

the gallery. In the gallery, click Linear Fitting in the Custom group.

In the Fit Options pane, an example equation appears when you click Linear Fitting.

 Custom Linear Fitting

5-7

3 You can change x and y to any valid variable names.
4 The lower box displays the example equation. Change the Coefficients and Terms entries to

change the example terms and define your own equation.

For an example, see “Fit Custom Linear Legendre Polynomials in Curve Fitter App” on page 5-9.

Selecting Linear Fitting at the Command Line
To use a linear fitting algorithm, specify a cell array or string array of model terms as an input to the
fit or fittype functions. Do not include coefficients in the expressions for the terms. If there is a
constant term, use '1' as the corresponding expression in the array.

To specify a linear model of the following form:

 coeff1 * term1 + coeff2 * term2 + coeff3 * term3 + ...

where no coefficient appears within any of term1, term2, etc., use a cell array or string array where
each term, without coefficients, is specified as a separate element. For example:

LinearModelTerms = {'term1', 'term2', 'term3', ... }

1 Identify the linear model terms you need to input to fittype. For example, the model

a*log(x) + b*x + c

is linear in a, b, and c. It has three terms log(x), x, and 1 (because c=c*1). To specify this
model you use these terms: LinearModelTerms = {'log(x)','x','1'}.

2 Use the cell array or string array of linear model terms as the input to the fittype function:

5 Custom Linear and Nonlinear Regression

5-8

linearfittype = fittype({'log(x)','x','1'})

linearfittype =

 Linear model:
 linearfittype(a,b,c,x) = a*log(x) + b*x + c

3 Load some data and use the fittype as an input to the fit function.

load census
f = fit(cdate,pop,linearfittype)

f =

 Linear model:
 f(x) = a*log(x) + b*x + c
 Coefficients (with 95% confidence bounds):
 a = -4.663e+04 (-4.973e+04, -4.352e+04)
 b = 25.9 (24.26, 27.55)
 c = 3.029e+05 (2.826e+05, 3.232e+05)

Alternatively, you can specify the cell array or string array of linear model terms as an input to
the fit function:

f = fit(x,z,{'log(x)','x','1'})
4 Plot the fit and data.

plot(f,cdate,pop)

For an example, see “Fit Custom Linear Legendre Polynomials at the Command Line” on page 5-18.

Fit Custom Linear Legendre Polynomials
Fit Custom Linear Legendre Polynomials in Curve Fitter App

This example shows how to fit data using several custom linear equations. The data is generated, and
is based on the nuclear reaction 12C(e,e'α)8Be. The equations use sums of Legendre polynomial terms.

Consider an experiment in which 124 MeV electrons are scattered from 12C nuclei. In the subsequent
reaction, alpha particles are emitted and produce the residual nuclei 8Be. By analyzing the number of
alpha particles emitted as a function of angle, you can deduce certain information regarding the
nuclear dynamics of 12C. The reaction kinematics are shown next.

 Custom Linear Fitting

5-9

The data is collected by placing solid state detectors at values of Θα ranging from 10o to 240o in 10o

increments.

It is sometimes useful to describe a variable expressed as a function of angle in terms of Legendre
polynomials

y(x) = ∑
n = 0

∞
anPn(x)

where Pn(x) is a Legendre polynomial of degree n, x is cos(Θα), and an are the coefficients of the fit.
For information about generating Legendre polynomials, see the legendre function.

For the alpha-emission data, you can directly associate the coefficients with the nuclear dynamics by
invoking a theoretical model. Additionally, the theoretical model introduces constraints for the infinite
sum shown above. In particular, by considering the angular momentum of the reaction, a fourth-
degree Legendre polynomial using only even terms should describe the data effectively.

You can generate Legendre polynomials with Rodrigues' formula:

Pn(x) = 1
2nn!

d
dx

n
(x2− 1)n

Legendre Polynomials Up to Fourth Degree

n Pn(x)
0 1
1 x
2 (1/2)(3x2– 1)
3 (1/2)(5x3 – 3x)
4 (1/8)(35x4 – 30x2 + 3)

This example shows how to fit the data using a fourth-degree Legendre polynomial with only even
terms:

y1(x) = a0 + a2
1
2 (3x2− 1) + a4

1
8 (35x4− 30x2 + 3)

1 Load the 12C alpha-emission data.

load carbon12alpha

The workspace now contains two new variables:

• angle is a vector of angles (in radians) ranging from 10o to 240o in 10o increments.
• counts is a vector of raw alpha particle counts that correspond to the emission angles in

angle.
2 Open the Curve Fitter app.

curveFitter
3 In the Curve Fitter app, on the Curve Fitter tab, in the Data section, click Select Data. In the

Select Fitting Data dialog box, select angle and counts as the X data and Y data values,
respectively, to create a default polynomial fit to the two variables.

5 Custom Linear and Nonlinear Regression

5-10

4 Change the fit type to a default custom linear fit. On the Curve Fitter tab, in the Fit Type
section, click the arrow to open the gallery. In the gallery, click Linear Fitting in the Custom
group.

Use Linear Fitting instead of the Custom Equation fit type because the Legendre polynomials
depend only on the predictor variable and constants. The equation you will specify for the model
is y1(x) (that is, the equation given at the beginning of this procedure). Because angle is given in
radians, the argument of the Legendre terms is given by cos(Θα).

5 In the Fit Options pane, change the equation terms.

a Change the Coefficients names to a2, a4, and a0.
b Change the Terms value for a2 to the following:

(1/2)*(3*cos(x)^2-1)

The Curve Fitter app updates the fit as you edit the terms.
c Change the Terms value for a4 to the following:

(1/8)*(35*cos(x)^4-30*cos(x)^2+3)

 Custom Linear Fitting

5-11

The fit appears in the Curve Fitter app.
6 In the Table Of Fits pane, double-click the Fit name value and change it to Leg4Even.

5 Custom Linear and Nonlinear Regression

5-12

7 Display the residuals. On the Curve Fitter tab, in the Visualization section, click Residuals
Plot.

 Custom Linear Fitting

5-13

The fit appears to follow the trend of the data well, while the residuals appear to be randomly
distributed and do not exhibit any systematic behavior.

8 Examine the numerical fit results in the Results pane. Look at each coefficient value and its
confidence bounds in parentheses. The 95% confidence bounds indicate that the coefficients
associated with a0(x) and a4(x) are known fairly accurately, but that the a2(x) coefficient has a
relatively large uncertainty.

5 Custom Linear and Nonlinear Regression

5-14

9 To confirm the theoretical argument that the alpha-emission data is best described by a fourth-
degree Legendre polynomial with only even terms, next fit the data using both even and odd
terms:

y2(x) = y1(x) + a1x + a3
1
2 (5x3− 3x)

First, make a copy of the Legendre polynomial fit to modify. On the Curve Fitter tab, in the File
section, click Duplicate. The duplicated fit appears in a new tab in the Fits pane.

10 In the Table Of Fits pane, rename the new fit to Leg4EvenOdd.
11 In the Fit Options pane, change the equation terms.

Edit the terms as follows to fit the model given by y2(x):

a Click the last + button twice, to add the odd Legendre terms.
b Change the new coefficient names to a1 and a3.
c Change the Terms value for a1 to the following:

cos(x)
d Change the Terms value for a3 to the following:

(1/2)*(5*cos(x)^3-3*cos(x))

 Custom Linear Fitting

5-15

12 Observe the new fit plotted in the Curve Fitter app, and examine the numerical results in the
Results pane.

5 Custom Linear and Nonlinear Regression

5-16

Note that the odd Legendre coefficients (a1 and a3) are likely candidates for removal to simplify
the fit because their values are small and their confidence bounds contain zero. These results
indicate that the odd Legendre terms do not contribute significantly to the fit, and the even
Legendre terms are essentially unchanged from the previous fit. This confirms that the initial
model choice in the Leg4Even fit is the best one.

13 Compare the fits side by side. Click the Document Actions arrow located to the far right of the fit
figure tabs. Select the Tile All option and specify a 1-by-2 layout.

You can display only the plots by dragging and hiding the Fit Options, Results, and Table Of
Fits panes.

 Custom Linear Fitting

5-17

Fit Custom Linear Legendre Polynomials at the Command Line

Fit the same model at the command line that you created in the Curve Fitter app.

1 To use a linear fitting algorithm, specify a cell array or string array of model terms as an input to
the fittype function. Use the same Terms you entered in the Curve Fitter app for the
Leg4Even fit, and do not specify any coefficients.

linearft = fittype({'(1/2)*(3*cos(x)^2-1)', ...
'(1/8)*(35*cos(x)^4-30*cos(x)^2+3)','1'})

linearft =

 Linear model:
 linearft(a,b,c,x) = a*((1/2)*(3*cos(x)^2-1))...
 + b*((1/8)*(35*cos(x)^4-30*cos(x)^2+3)) + c

2 Load the angle and counts variables in the workspace.

load carbon12alpha
3 Use the fittype as an input to the fit function, and specify the angle and counts variables in

the workspace.

f = fit(angle,counts,linearft)

f =

 Linear model:
 f(x) = a*((1/2)*(3*cos(x)^2-1))...

5 Custom Linear and Nonlinear Regression

5-18

 + b*((1/8)*(35*cos(x)^4-30*cos(x)^2+3)) + c
 Coefficients (with 95% confidence bounds):
 a = 23.86 (4.436, 43.29)
 b = 201.9 (180.2, 223.6)
 c = 102.9 (93.21, 112.5)

4 Plot the fit and data.

plot(f,angle,counts)

For more details on linear model terms, see the fittype function.

 Custom Linear Fitting

5-19

Custom Nonlinear Census Fitting

This example shows how to fit a custom equation to census data, specifying bounds, coefficients, and
a problem-dependent parameter.

Load and plot the data in census.mat:

load census
plot(cdate,pop,'o')
hold on

Create a fit options structure and a fittype object for the custom nonlinear model y = a(x-b)n, where a
and b are coefficients and n is a problem-dependent parameter. See the fittype function page for more
details on problem-dependent parameters.

s = fitoptions('Method','NonlinearLeastSquares',...
 'Lower',[0,0],...
 'Upper',[Inf,max(cdate)],...
 'Startpoint',[1 1]);
f = fittype('a*(x-b)^n','problem','n','options',s);

Fit the data using the fit options and a value of n = 2:

[c2,gof2] = fit(cdate,pop,f,'problem',2)

c2 =
 General model:

5 Custom Linear and Nonlinear Regression

5-20

 c2(x) = a*(x-b)^n
 Coefficients (with 95% confidence bounds):
 a = 0.006092 (0.005743, 0.006441)
 b = 1789 (1784, 1793)
 Problem parameters:
 n = 2

gof2 = struct with fields:
 sse: 246.1543
 rsquare: 0.9980
 dfe: 19
 adjrsquare: 0.9979
 rmse: 3.5994

Fit the data using the fit options and a value of n = 3:

[c3,gof3] = fit(cdate,pop,f,'problem',3)

c3 =
 General model:
 c3(x) = a*(x-b)^n
 Coefficients (with 95% confidence bounds):
 a = 1.359e-05 (1.245e-05, 1.474e-05)
 b = 1725 (1718, 1731)
 Problem parameters:
 n = 3

gof3 = struct with fields:
 sse: 232.0058
 rsquare: 0.9981
 dfe: 19
 adjrsquare: 0.9980
 rmse: 3.4944

Plot the fit results and the data:

plot(c2,'m')
plot(c3,'c')
legend('data','fit with n=2','fit with n=3')

 Custom Nonlinear Census Fitting

5-21

5 Custom Linear and Nonlinear Regression

5-22

Custom Nonlinear ENSO Data Analysis
This example fits the ENSO data using several custom nonlinear equations. The ENSO data consists
of monthly averaged atmospheric pressure differences between Easter Island and Darwin, Australia.
This difference drives the trade winds in the southern hemisphere.

The ENSO data is clearly periodic, which suggests it can be described by a Fourier series:

y(x) = a0 + ∑
i = 1

∞
aicos 2π x

ci
+ bisin 2π x

ci

where ai and bi are the amplitudes, and ci are the periods (cycles) of the data. Determine how many
cycles exist.

As a first attempt, assume a single cycle and fit the data using one cosine term and one sine term.

y1(x) = a0 + a1cos 2π x
c1

+ b1sin 2π x
c1

If the fit does not describe the data well, add additional cosine and sine terms with unique period
coefficients until a good fit is obtained.

The equation is nonlinear because an unknown coefficient c1 is included as part of the trigonometric
function arguments.

Load Data and Fit Library and Custom Fourier Models
1 Load the data and open the Curve Fitter app.

load enso
curveFitter

2 The app includes the Fourier series as a nonlinear library equation. However, the library equation
does not meet the needs of this example because its terms are defined as fixed multiples of the
fundamental frequency w. Refer to “Fit Fourier Models” on page 4-36 for more information.
Create the built-in library Fourier fit to compare with your custom equations:

a In the app, on the Curve Fitter tab, in the Data section, click Select Data. In the Select
Fitting Data dialog box, select month as the X data value and pressure as the Y data
value.

b On the Curve Fitter tab, in the Fit Type section, click the arrow to open the gallery. In the
fit gallery, click Fourier in the Regression Models group.

c In the Table Of Fits pane, double-click the Fit name value and enter Fourier.
d In the Fit Options pane, change the number of terms to 8.

Observe the library model fit. In the next steps, you will create custom equations to compare.

 Custom Nonlinear ENSO Data Analysis

5-23

3 Duplicate your fit. Right-click your fit in the Table Of Fits pane and select Duplicate "Fourier".
4 Name the new fit Enso1Period.
5 On the Curve Fitter tab, in the Fit Type section, open the fit type gallery and click Custom

Equation in the Custom group.
6 In the Fit Options pane, replace the example text in the equation edit box with the following:

a0 + a1*cos(2*pi*x/c1) + b1*sin(2*pi*x/c1)

5 Custom Linear and Nonlinear Regression

5-24

The app applies the fit to the enso data.

The graphical and numerical results shown here indicate that the fit does not describe the data well.
In particular, the fitted value for c1 is unreasonably small. Your initial fit results might differ from
these results because the starting points are randomly selected.

 Custom Nonlinear ENSO Data Analysis

5-25

By default, the coefficients are unbounded and have random starting values from 0 to 1. The data
include a periodic component with a period of about 12 months. However, with c1 unconstrained and
with a random starting point, this fit failed to find that cycle.

Use Fit Options to Constrain a Coefficient
1 To assist the fitting procedure, constrain c1 to a value from 10 to 14. In the Fit Options pane,

click Advanced Options to expand the section and view the constraints for the coefficients.
Observe that by default the coefficients are unbounded (bounds of -Inf and Inf).

2 In the Coefficient Constraints table, change the Lower and Upper bounds for c1 to constrain
the cycle from 10 to 14 months, as shown next.

5 Custom Linear and Nonlinear Regression

5-26

The Curve Fitter app updates the fit.
3 Observe the new fit and the residuals plot. If necessary, click Residuals Plot in the

Visualization section of the Curve Fitter tab.

 Custom Nonlinear ENSO Data Analysis

5-27

The fit appears to be reasonable for some data points but clearly does not describe the entire
data set very well. As predicted, the numerical results in the Results pane (c1=11.94) indicate a
cycle of approximately 12 months. However, the residuals show a systematic periodic
distribution, indicating that at least one more cycle exists. There are additional cycles that you
should include in the fit equation.

Create Second Custom Fit with Additional Terms and Constraints
To refine your fit, you need to add an additional sine and cosine term to y1(x) as follows:

y2(x) = y1(x) + a2cos 2π x
c2

+ b2sin 2π x
c2

and constrain the upper and lower bounds of c2 to be roughly twice the bounds used for c1.

1 Duplicate your fit by right-clicking it in the Table Of Fits pane and selecting Duplicate
"Enso1Period".

2 Name the new fit Enso2Period.
3 In the Fit Options pane, add two terms to the end of the previous equation so that the equation

box displays the following terms:

a0 + a1*cos(2*pi*x/c1) + b1*sin(2*pi*x/c1) +
a2*cos(2*pi*x/c2) + b2*sin(2*pi*x/c2)

4 Click Advanced Options to expand the section. In the Coefficient Constraints table, observe
the Lower and Upper bounds for c1, which constrain the cycle from 10 to 14 months. Add more
coefficient constraints.

a Change the Lower and Upper bounds for c2 to be roughly twice the bounds used for c1
(20<c2<30).

5 Custom Linear and Nonlinear Regression

5-28

b Change the StartPoint value for a0 to 5.

As you change each setting, the Curve Fitter app updates the fit. You can observe the fit plot and
the residuals plot.

The fit appears reasonable for most data points. However, the residuals indicate that you should
include another cycle to the fit equation.

Create a Third Custom Fit with Additional Terms and Constraints
As a third attempt, add an additional sine and cosine term to y2(x)

y3(x) = y2(x) + a3cos 2π x
c3

+ b3sin 2π x
c3

and constrain the lower bound of c3 to be roughly triple the value of c1.

1 Duplicate your fit by right-clicking it in the Table Of Fits pane and selecting Duplicate
"Enso2Period".

2 Name the new fit Enso3Period.
3 In the Fit Options pane, add two terms to the end of the previous equation so that the equation

box displays the following terms:

a0 + a1*cos(2*pi*x/c1) + b1*sin(2*pi*x/c1) +
a2*cos(2*pi*x/c2) + b2*sin(2*pi*x/c2) +
a3*cos(2*pi*x/c3) + b3*sin(2*pi*x/c3)

4 Click Advanced Options to expand the section. Observe that your previous fit options are still
present.

5 In the Coefficient Constraints table, change the Lower bound for c3 to 36, which is roughly
triple the value of c1.

 Custom Nonlinear ENSO Data Analysis

5-29

As you change each setting, the Curve Fitter app updates the fit. You can observe the fit plot and
the residuals plot.

5 Custom Linear and Nonlinear Regression

5-30

The fit is an improvement over the previous two fits, and appears to account for most of the cycles in
the ENSO data set. The residuals appear random for most of the data, although a pattern is still
visible indicating that additional cycles might be present, or you can improve the fitted amplitudes.

In conclusion, Fourier analysis of the data reveals three significant cycles. The annual cycle is the
strongest, but cycles with periods of approximately 44 and 22 months are also present. These cycles
correspond to El Nino and the Southern Oscillation (ENSO).

 Custom Nonlinear ENSO Data Analysis

5-31

Gaussian Fitting with an Exponential Background
This example fits two poorly resolved Gaussian peaks on a decaying exponential background using a
general (nonlinear) custom model.

Fit the data using this equation

y(x) = ae−bx + a1e−
x− b1

c1

2
+ a2e−

x− b2
c2

2

where ai are the peak amplitudes, bi are the peak centroids, and ci are related to the peak widths.
Because unknown coefficients are part of the exponential function arguments, the equation is
nonlinear.

1 Load the data and open the Curve Fitter app.

load gauss3
curveFitter

The workspace contains two new variables:

• xpeak is a vector of predictor values.
• ypeak is a vector of response values.

2 In the Curve Fitter app, on the Curve Fitter tab, in the Data section, click Select Data. In the
Select Fitting Data dialog box, select xpeak as the X data value and ypeak as the Y data value.
Enter Gauss2exp1 as the Fit name value.

3 On the Curve Fitter tab, in the Fit Type section, click the arrow to open the gallery. In the fit
gallery, click Custom Equation in the Custom group.

4 In the Fit Options pane, replace the example text in the equation edit box with these terms:

a*exp(-b*x) + a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2)

The fit is poor (or incomplete) at this point because the starting points are randomly selected and
no coefficients have bounds.

5 Specify reasonable coefficient starting points and constraints. Deducing the starting points is
particularly easy for the current model because the Gaussian coefficients have a straightforward
interpretation and the exponential background is well defined. Additionally, as the peak
amplitudes and widths cannot be negative, constrain a1, a2, c1, and c2 to be greater than 0.

a In the Fit Options pane, click Advanced Options.
b In the Coefficient Constraints table, change the Lower bound for a1, a2, c1, and c2 to 0, as

the peak amplitudes and widths cannot be negative.
c Enter the StartPoint values as shown for the specified coefficients.

Coefficients Start Point
a 100
a1 100
a2 80
b 0.1

5 Custom Linear and Nonlinear Regression

5-32

Coefficients Start Point
b1 110
b2 140
c1 20
c2 20

As you change the fit options, the Curve Fitter app updates the fit.
6 Observe the fit and residuals plots. To create a residuals plot, click Residuals Plot in the

Visualization section of the Curve Fitter tab.

 Gaussian Fitting with an Exponential Background

5-33

5 Custom Linear and Nonlinear Regression

5-34

Surface Fitting to Biopharmaceutical Data
Curve Fitting Toolbox software provides some example data for an anesthesia drug interaction study.
You can use the Curve Fitter app to fit response surfaces to this data to analyze drug interaction
effects. Response surface models provide a good method for understanding the pharmacodynamic
interaction behavior of drug combinations. This data is based on the results in [1].

Anesthesia is typically at least a two-drug process, consisting of an opioid and a sedative hypnotic.
This example uses Propofol and Reminfentanil as drug class prototypes. Their interaction is measured
by four different measures of the analgesic and sedative response to the drug combination.
Algometry, Tetany, Sedation, and Laryingoscopy comprise the four measures of surrogate drug effects
at various concentration combinations of Propofol and Reminfentanil.

To interactively create response surfaces for this drug combination:

1 Use the Current Folder browser to locate and view the folder matlab\toolbox\curvefit
\curvefit.

2 Right-click the file OpioidHypnoticSynergy.txt, and select Import Data. The Import Tool
appears.

a On the Import tab, in the Delimiters section, leave the default Column delimiters value
as Tab.

Review the six variables selected for import: Propofol, Reminfentanil, Algometry,
Tetany, Sedation, and Laryingoscopy.

b In the Import section, click Import Selection and select Import Data to import the dose-
response data into the MATLAB workspace. Close the Import Tool.

Alternatively, you can import the data programmatically. Enter the following code to read the
dose-response data from the file into the MATLAB workspace.

data = importdata("OpioidHypnoticSynergy.txt");
OpioidHypnoticSynergy = array2table(data.data, ...
 "VariableNames",data.textdata);

3 To create response surfaces, you must select two drugs as x and y inputs, and one of the four
effects as the z output. After you load the variables into your workspace, you open the Curve
Fitter app and then select variables interactively. Alternatively, you can specify the initial fit
variables when using the curveFitter function.

For this example, open the Curve Fitter app.

curveFitter
4 In the Curve Fitter app, on the Curve Fitter tab, in the Data section, click Select Data. In the

Select Fitting Data dialog box, first select the OpioidHypnoticSynergy table from the X data,
Y data, and Z data drop-down lists. Then select the Propofol, Remifentanil, and Algometry
variables from the new drop-down lists.

 Surface Fitting to Biopharmaceutical Data

5-35

The app creates a new response surface for the Algometry data. The default fit is an
interpolating surface that passes through the data points.

5 Create a copy of the current surface fit by either:

a Selecting the Duplicate button in the File section of the Curve Fitter tab.
b Right-clicking a fit in the Table Of Fits pane, and selecting Duplicate "untitled fit 1".

5 Custom Linear and Nonlinear Regression

5-36

6 Define your own equation to fit the data. On the Curve Fitter tab, in the Fit Type section, click
the arrow to open the gallery. In the gallery, click Custom Equation in the Custom group.

7 In the Fit Options pane, select and delete the example custom equation text in the edit box.

You can use the custom equation edit box to enter MATLAB code to define your model. The
equation that defines the model must depend on the data variables x and y and a list of fixed
parameters, estimable parameters, or both.

The model from the paper is:

E =
Emax .

CA
IC50A

+
CB

IC50B
+ α .

CA
IC50A

.
CB

IC50B

n

1 +
CA

IC50A
+

CB
IC50B

+ α .
CA

IC50A
.

CB
IC50B

n

where CA and CB are the drug concentrations, and IC50A, IC50B, alpha, and n are the coefficients
to be estimated.

You can define this in MATLAB code as:

Effect = Emax*(CA/IC50A + CB/IC50B + ...
 alpha*(CA/IC50A).*(CB/IC50B)).^n ./ ...
 (1 + (CA/IC50A + CB/IC50B + ...
 alpha*(CA/IC50A).*(CB/IC50B)).^n);

Telling the app which variables to fit and which parameters to estimate requires rewriting the
variable names CA and CB as x, and y. You must include x and y when you enter a custom
equation in the edit box. Assume Emax = 1 because the effect output is normalized.

8 Enter the following text in the custom equation edit box.

(x/IC50A + y/IC50B + alpha*(x/IC50A).*(y/IC50B)).^n ./
(1 + (x/IC50A + y/IC50B + alpha*(x/IC50A).*(y/IC50B)).^n)

The Curve Fitter app fits a surface to the data using the custom equation model.

 Surface Fitting to Biopharmaceutical Data

5-37

9 In the Fit Options pane, change some of the fit options. Click Advanced Options to expand the
section.

a Set the Robust value to LAR.
b In the Coefficient Constraints table, for the alpha coefficient, set the StartPoint value to

1 and the Lower bound to –5.

5 Custom Linear and Nonlinear Regression

5-38

The app updates the fit with your new options.
10 Review the Results pane. View any of these results:

• The model equation
• The values of the estimated coefficients
• The goodness-of-fit statistics

11 Display the residuals plot to check the distribution of points relative to the surface. On the Curve
Fitter tab, in the Visualization section, click Residuals Plot.

 Surface Fitting to Biopharmaceutical Data

5-39

12 Generate code for the currently selected fit and its open plots in your Curve Fitter app session.
On the Curve Fitter tab, in the Export section, click Export and select Generate Code.

The Curve Fitter app generates code from your session and displays the file in the MATLAB
Editor. The file includes the fit selected in your current session and its open plots.

13 Save the file with the default name, createFit.m.
14 You can recreate your fit and its plots by calling the file from the command line with your original

data or new data as input arguments.

In this case, because your original data still appears in the workspace, you can run the function
with the original data variables.

[fitresult,gof] = createFit(OpioidHypnoticSynergy.Propofol, ...
 OpioidHypnoticSynergy.Remifentanil, ...
 OpioidHypnoticSynergy.Algometry)

The function creates a figure window for the fit you selected in your session. The custom fit
figure shows both the surface and residuals plots that you created interactively in the Curve
Fitter app.

15 Create a new fit to the Tetany response instead of Algometry.

[fitresult,gof] = createFit(OpioidHypnoticSynergy.Propofol, ...
 OpioidHypnoticSynergy.Remifentanil, ...
 OpioidHypnoticSynergy.Tetany)

5 Custom Linear and Nonlinear Regression

5-40

You need to edit the file if you want the new response label on the plots. You can use the
generated code as a starting point to change the surface fits and plots to meet your needs. For a
list of methods you can use, see sfit.

To see how to programmatically fit surfaces to the same example problem, see “Surface Fitting with
Custom Equations to Biopharmaceutical Data” on page 12-14.

References
[1] Kern, Steven E., Guoming Xie, Julia L. White, and Talmage D. Egan. “A Response Surface Analysis

of Propofol–Remifentanil Pharmacodynamic Interaction in Volunteers.” Anesthesiology 100,
no. 6 (June 1, 2004): 1373–81. https://doi.org/10.1097/00000542-200406000-00007.

 Surface Fitting to Biopharmaceutical Data

5-41

Interpolation and Smoothing

• “Nonparametric Fitting” on page 6-2
• “Interpolation with Curve Fitting Toolbox” on page 6-3
• “Extrapolation for Interpolant Fit Types” on page 6-8
• “Smoothing Splines” on page 6-14
• “Lowess Smoothing” on page 6-22
• “Fit Smooth Surfaces to Investigate Fuel Efficiency” on page 6-26
• “Filtering and Smoothing Data” on page 6-34

6

Nonparametric Fitting
In some cases, you are not concerned about extracting or interpreting fitted parameters. Instead, you
might simply want to draw a smooth curve through your data. Fitting of this type is called
nonparametric fitting. The Curve Fitting Toolbox software supports these nonparametric fitting
methods:

• “Interpolation with Curve Fitting Toolbox” on page 6-3 — Estimate values that lie between
known data points.

• “Smoothing Splines” on page 6-14 — Create a smooth curve through the data. You adjust the
level of smoothness by varying a parameter that changes the curve from a least-squares straight-
line approximation to a cubic spline interpolant.

• “Lowess Smoothing” on page 6-22 — Create a smooth surface through the data using locally
weighted linear regression to smooth data.

For details about interpolation, see “Interpolation”.

You can also use smoothing techniques on response data. See “Filtering and Smoothing Data” on
page 6-34.

To view all available model types, see “List of Library Models for Curve and Surface Fitting” on page
4-10.

See Also

Related Examples
• “Selecting an Interpolant Fit” on page 6-4
• “Smoothing Splines” on page 6-14
• “Lowess Smoothing” on page 6-22
• “Filtering and Smoothing Data” on page 6-34

6 Interpolation and Smoothing

6-2

Interpolation with Curve Fitting Toolbox
In this section...
“About Interpolation Methods” on page 6-3
“Selecting an Interpolant Fit” on page 6-4

Interpolation is a process for estimating values that lie between known data points.

Interpolation involves creating of a function f that matches given data values yi at given data sites xi
where f(xi) = yi, for all i.

Most interpolation methods create the interpolant f as the unique function of the formula

f (x) = ∑
j

f j(x)a j,

where the form of the functions fj depends on the interpolation method.

For spline interpolation, the fj are the n consecutive B-splines Bj(x) = B(x|tj,...,tj+k), j = 1:n, of order k
for a knot sequence t1 ≤ t2 ≤ ... ≤ tn + k.

About Interpolation Methods
Curve Fitting Toolbox supports the interpolation methods described in the following table.

Method Description
Linear Linear interpolation. This method fits a different linear polynomial

between each pair of data points for curves, or between sets of three
points for surfaces.

Nearest neighbor Nearest neighbor interpolation. This method sets the value of an
interpolated point to the value of the nearest data point.

Cubic spline Cubic spline interpolation. This method fits a different cubic polynomial
between each pair of data points for curves, or between sets of three
points for surfaces.

Shape-preserving (PCHIP) Piecewise cubic Hermite interpolation (PCHIP). This method preserves
monotonicity and the shape of the data (for curves only).

Biharmonic (v4) MATLAB 4 griddata method. This method fits surfaces that also
extrapolate well (for surfaces only).

Thin-plate spline Thin-plate spline interpolation. This method fits smooth surfaces that
also extrapolate well (for surfaces only).

Interpolant surface fits use the MATLAB function scatteredInterpolant for the linear and
nearest neighbor methods, and the MATLAB function griddata for the cubic spline and biharmonic
methods. The thin-plate spline method uses the tpaps function.

The interpolant method you use depends on several factors, including the characteristics of the data
being fit, the required smoothness of the curve, speed considerations, and post-fit analysis
requirements. The linear and nearest neighbor methods fit models efficiently, and the resulting
curves are not very smooth. The cubic spline, shape-preserving, and biharmonic methods take longer
to fit models, and the resulting curves are very smooth.

 Interpolation with Curve Fitting Toolbox

6-3

For example, the following plot shows a nearest neighbor interpolant fit and a shape-preserving
(PCHIP) interpolant fit for the nuclear reaction data from the carbon12alpha.mat sample data set.
The nearest neighbor interpolant is not as smooth as the shape-preserving interpolant.

Note Goodness-of-fit statistics, prediction bounds, and weights are not defined for interpolants.
Additionally, the fit residuals are always 0 (within computer precision) because interpolants pass
through the data points.

Biharmonic interpolant fits consist of radial basis function interpolants. All other interpolants
supported by Curve Fitting Toolbox are piecewise polynomials and consist of multiple polynomials
defined between data points. For cubic spline and PCHIP interpolation, four coefficients describe
each piece. Curve Fitting Toolbox uses a cubic (third-degree) polynomial to calculate the four
coefficients. Refer to the following for more information:

• spline for cubic spline interpolation
• pchip for shape-preserving (PCHIP) interpolation, and for a comparison of PCHIP and cubic

spline interpolation
• scatteredInterpolant, griddata, and tpaps for surface interpolation

It is possible to fit a single polynomial interpolant to data, with a degree one less than the number
of data points. However, the behavior of such fits is unpredictable between data points. Piecewise
polynomials with lower-order segments do not diverge significantly from the fitting data domain,
so they are useful for analyzing a wider range of data sets.

Selecting an Interpolant Fit
• “Select Interpolant Fit Interactively” on page 6-5
• “Fit Linear Interpolant Model Using the fit Function” on page 6-5

6 Interpolation and Smoothing

6-4

Select Interpolant Fit Interactively

Open the Curve Fitter app by entering curveFitter at the MATLAB command line. Alternatively, on
the Apps tab, in the Math, Statistics and Optimization group, click Curve Fitter.

On the Curve Fitter tab, in the Fit Type section, select an Interpolant fit. The app fits an
interpolating curve or surface that passes through every data point.

In the Fit Options pane, you can specify the Interpolation method value.

For curve data, you can set Interpolation method to Linear, Nearest neighbor, Cubic
Spline, or Shape-preserving (PCHIP). For surface data, you can set Interpolation method to
Nearest neighbor, Linear, Cubic Spline, Biharmonic (v4), or Thin-plate spline.

For surfaces, the Interpolant fit uses the scatteredInterpolant function for the Linear and
Nearest neighbor methods, the griddata function for the Cubic Spline and Biharmonic
(v4) methods, and the tpaps function for the Thin-plate spline method. Try the Thin-plate
spline method when you require both smooth surface interpolation and good extrapolation
properties.

Tip If your data variables have very different scales, select and clear the Center and scale check
box to see the difference in the fit. Normalizing the inputs can influence the results of the piecewise
Linear and Cubic Spline interpolation, and Nearest neighbor surface interpolation methods.

Fit Linear Interpolant Model Using the fit Function

Load the census sample data set.

load census

The variables pop and cdate contain data for the population size and the year the census was taken,
respectively.

You can use the fit function to fit any of the interpolant models described in “Interpolant Model
Names” on page 4-13. In this case, fit a linear interpolant model using the 'linearinterp' option,
and then plot the result.

f = fit(cdate,pop,'linearinterp');
plot(f,cdate,pop);

 Interpolation with Curve Fitting Toolbox

6-5

Compare Linear Interpolant Models

Load the carbon12alpha sample data set. Create both nearest neighbor and PCHIP interpolant fits
using the 'nearestinterp' and 'pchip' options.

load carbon12alpha
f1 = fit(angle,counts,'nearestinterp');
f2 = fit(angle,counts,'pchip');

Compare the fitted curves f1 and f2 by plotting them in the same figure.

p1 = plot(f1,angle,counts);
xlim([min(angle),max(angle)])
hold on

p2 = plot(f2,'b');
hold off
legend([p1;p2],'Counts per Angle','Nearest Neighbor','PCHIP',...
 'Location','northwest')

6 Interpolation and Smoothing

6-6

See Also
Apps
Curve Fitter

Functions
fit

Related Examples
• “Introducing Spline Fitting” on page 8-2
• “Extrapolation for Interpolant Fit Types” on page 6-8

 Interpolation with Curve Fitting Toolbox

6-7

Extrapolation for Interpolant Fit Types
Extrapolation is a process for estimating dependent variable values for independent variable values
outside of the fitting data domain. Many different methods perform extrapolation. Given fitting data X
for the independent variables and Y for the dependent variable, an extrapolation method creates a
function

y = f (X, Y, u),

where u is a vector of independent variable values outside of the basic interval, and y is the
corresponding estimate for the dependent variable.

Curve Fitting Toolbox supports extrapolation for interpolant curve and surface fits. For more
information about interpolation, see “Interpolation with Curve Fitting Toolbox” on page 6-3. The
following table describes the supported extrapolation methods in Curve Fitting Toolbox.

Extrapolation Method Description Supported Interpolation
Methods

None No extrapolation Linear, nearest neighbor, and
cubic spline for surfaces

Linear This method fits a linear
polynomial at each data point on
the boundary of the fitting
data's convex hull. Each linear
polynomial follows the gradient
at the corresponding data point.

Linear, and nearest neighbor
and cubic spline for surfaces

Nearest neighbor This method evaluates to the
value of the nearest point on the
boundary of the fitting data's
convex hull.

Nearest neighbor, and linear
and cubic spline for surfaces

Thin-plate spline This method fits a thin-plate
spline through the fitting data
and extends it outside of the
fitting data's convex hull.

Thin-plate spline

Biharmonic spline This method fits a biharmonic
spline through the fitting data
and extends it outside of the
fitting data's convex hull.

Biharmonic (v4)

PCHIP This method fits a shape-
preserving piecewise cubic
hermite interpolating
polynomial (PCHIP) through the
fitting data and extends it
outside of the fitting data's
convex hull.

Shape-preserving (PCHIP)

6 Interpolation and Smoothing

6-8

Extrapolation Method Description Supported Interpolation
Methods

Cubic spline This method fits a cubic
interpolating spline through the
fitting data and extends it
outside of the fitting data's
convex hull.

Cubic spline for curves

Thin-plate spline extrapolation uses the tpaps function, and PCHIP extrapolation uses the pchip
function. Interpolant surface fits use the MATLAB function scatteredInterpolant function for
none, linear, and nearest neighbor extrapolation, and the MATLAB function griddata for biharmonic
extrapolation.

Selecting an Extrapolation Method
Curve Fitting Toolbox allows you to choose an extrapolation method for surface fits that use linear,
nearest neighbor, or cubic spline interpolation. The extrapolation method you use depends on several
factors, including the characteristics of the data being fit, the required smoothness of the curve, and
post-fit analysis requirements. You can specify extrapolation methods interactively using the Curve
Fitter app, or from the command line using the fit and fitoptions functions.

Select Extrapolation Method Interactively

1 Generate data or load data into the workspace.
2 Open the Curve Fitter app by entering curveFitter at the MATLAB command line.

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

3 In the Curve Fitter app, select curve data. On the Curve Fitter tab, in the Data section, click
Select Data. In the Select Fitting Data dialog box, select X data, Y data and Z data.

4 Click the arrow in the Fit Type section to open the gallery, and click Interpolant in the
Interpolation group.

You can specify the interpolation method by using the Interpolation method menu in the Fit Options
pane. If the interpolation method supports multiple extrapolation methods, you can specify the
extrapolation method using the Extrapolation method menu.

Specify Extrapolation Method from Command Line

Generate some noisy data using the membrane and randn functions.

 Extrapolation for Interpolant Fit Types

6-9

n = 41;
M = membrane(1,20)+0.02*randn(n);
[X,Y] = meshgrid(1:n);

The matrix M contains data for the L-shaped membrane with added noise. The matrices X and Y
contain the row and column index values, respectively, for the corresponding elements in M.

Display a surface plot of the data.

surf(X,Y,M)

The plot shows a wrinkled L-shaped membrane. The wrinkles in the membrane are caused by the
noise in the data.

Specify Extrapolation Method Using fit Function

Use the fit function to fit a surface through the wrinkled membrane using linear interpolation.
Specify the extrapolation method as nearest neighbor.

linfit = fit([X(:),Y(:)],M(:),"linearinterp",ExtrapolationMethod="nearest")

 Linear interpolant:
 linfit(x,y) = piecewise linear surface computed from p
 with nearest neighbor extrapolation
 Coefficients:
 p = coefficient structure

6 Interpolation and Smoothing

6-10

The output confirms that the function uses linear interpolation and nearest neighbor extrapolation to
fit a surface through the data.

Evaluate the fit beyond the X and Y data domain by using the meshgrid function. Plot the result
using the surf function.

[Xq,Yq] = meshgrid(-10:50);
Zlin = linfit(Xq,Yq);

surf(Xq,Yq,Zlin);

The plot shows that the nearest neighbor extrapolation method uses the data on the convex hull to
extend the surface in each direction. This method of extrapolation generates waves that mimic the
convex hull.

Specify Extrapolation Method Using fitoptions Function

Use the fitoptions function to generate fit options that use nearest neighbor interpolation and
linear extrapolation.

fitOptions = fitoptions("nearestinterp",ExtrapolationMethod="linear")

fitOptions =
 nearestinterpoptions with properties:

 ExtrapolationMethod: 'linear'
 Normalize: 'off'

 Extrapolation for Interpolant Fit Types

6-11

 Exclude: []
 Weights: []
 Method: 'NearestInterpolant'

fitOptions is a fit options object that specifies nearest neighbor interpolation and linear
extrapolation.

Fit a surface through the wrinkled membrane using the options in fitOptions.

nearfit = fit([X(:),Y(:)],M(:),"nearestinterp",fitOptions)

 Nearest neighbor interpolant:
 nearfit(x,y) = piecewise constant surface computed from p
 with linear extrapolation
 Coefficients:
 p = coefficient structure

Evaluate the fit beyond the X and Y data domain, and then plot the result.

Znear = nearfit(Xq,Yq);
surf(Xq,Yq,Znear);

6 Interpolation and Smoothing

6-12

The plot shows that the linear extrapolation method generates spikes outside of the X and Y convex
hull. The plane segments that form the spikes follow the gradient at data points on the convex hull
border.

See Also
Functions
fit | fitoptions | tpaps | pchip | griddata

Objects
scatteredInterpolant

 Extrapolation for Interpolant Fit Types

6-13

Smoothing Splines
In this section...
“About Smoothing Splines” on page 6-14
“Select Smoothing Spline Fit Interactively” on page 6-15
“Fit Smoothing Spline Models Using the fit Function” on page 6-16
“Compare Cubic and Smoothing Spline Fit Using Curve Fitter” on page 6-18

About Smoothing Splines
If your data is noisy, you might want to fit it using a smoothing spline. Alternatively, you can use one
of the smoothing methods described in “Filtering and Smoothing Data” on page 6-34.

The smoothing spline s is constructed for the specified smoothing parameter p and the specified
weights wi. The smoothing spline minimizes

p∑
i

wi yi− s(xi) 2 + (1− p)∫ d2s
dx2

2
dx

If the weights are not specified, they are assumed to be 1 for all data points.

p is defined between 0 and 1. p = 0 produces a least-squares straight-line fit to the data, while p = 1
produces a cubic spline interpolant. If you do not specify the smoothing parameter, it is automatically
selected in the “interesting range.” The interesting range of p is often near 1/(1+h3/6) where h is the
average spacing of the data points, and it is typically much smaller than the allowed range of the
parameter. Because smoothing splines have an associated smoothing parameter, you might consider
these fits to be parametric in that sense. However, smoothing splines are also piecewise polynomials
like cubic spline or shape-preserving interpolants and are considered a nonparametric fit type in this
guide.

Note The smoothing spline algorithm is based on the csaps function.

The nuclear reaction data from the file carbon12alpha.mat is shown here with three smoothing spline
fits. The default smoothing parameter (p = 0.99) produces the smoothest curve. The cubic spline
curve (p = 1) goes through all the data points, but is not quite as smooth. The third curve (p = 0.95)
misses the data by a wide margin and illustrates how small the “interesting range” of p can be.

6 Interpolation and Smoothing

6-14

Select Smoothing Spline Fit Interactively
1 Load the data at the MATLAB command line.

load carbon12alpha
2 Open the Curve Fitter app.

curveFitter

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

3 On the Curve Fitter tab, in the Data section, click Select Data. In the Select Fitting Data
dialog box, select angle as the X data value and counts as the Y data value. For details, see
“Selecting Data to Fit in Curve Fitter App” on page 2-10.

4 On the Curve Fitter tab, in the Fit Type section, click the arrow to open the gallery, and click
Smoothing Spline in the Smoothing group.

5 In the Fit Options pane, you can specify the Smoothing Parameter value.

 Smoothing Splines

6-15

The default Smoothing Parameter value is close to 1. The app tries to select a default value
appropriate for your data. You can change the Smoothing Parameter value by doing one of the
following:

• To create a smoother fit further from the data, click the < Smoother button repeatedly until
the plot shows the smoothness you want.

• To create a rougher fit closer to the data, click the Rougher > button until you are satisfied
with the plot.

• Alternatively, specify any value from 0 to 1 for the smoothing parameter. A value of 0
produces a linear polynomial fit (a least-squares straight-line fit to the data), while 1 produces
a piecewise cubic polynomial fit that passes through all the data points (a cubic spline
interpolant). For the carbon12alpha data set, try Smoothing Parameter values 1 and
0.95.

• Click Default to return to the initial value.

Fit Smoothing Spline Models Using the fit Function

This example shows how to use the fit function to fit a smoothing spline model to data.

Fit a Smoothing Spline Model

Load data and fit a smoothing spline model by specifying 'smoothingspline' when calling the fit
function.

load enso
f = fit(month,pressure,'smoothingspline');
plot(f,month,pressure)

6 Interpolation and Smoothing

6-16

matlab:fit

View Calculated Smoothing Parameter

Create the model again and use the third output argument to view the calculated smoothing
parameter. The smoothing parameter is the p value in the out structure. The default value depends
on the data set.

[f,gof,out] = fit(month,pressure,'smoothingspline');

out.p

ans = 0.9000

Specify Smoothing Parameter using 'SmoothingParam'

Specify the smoothing parameter for a new fit with the 'SmoothingParam' option. Its value must be
between 0 and 1.

f = fit(month,pressure,'smoothingspline','SmoothingParam',0.07);
plot(f,month,pressure)

 Smoothing Splines

6-17

Specify Smoothing Parameter using fitoptions

Alternatively, use fitoptions to specify a smoothing parameter before fitting.

options = fitoptions('Method','Smooth','SmoothingParam',0.07);
[f,gof,out] = fit(month,pressure,'smooth',options);
out.p

ans = 0.0700

For an alternative to 'smoothingspline', you can use the csaps cubic smoothing spline function or
other spline functions that allow greater control over what you can create. See “Introducing Spline
Fitting” on page 8-2.

Compare Cubic and Smoothing Spline Fit Using Curve Fitter
This example compares a cubic spline interpolant fit and a smoothing spline fit using the Curve Fitter
app.

1 Create the data x and y.

x = (4*pi)*[0 1 rand(1,25)];
y = sin(x) + .2*(rand(size(x))-.5);

2 Open the Curve Fitter app.

curveFitter

6 Interpolation and Smoothing

6-18

matlab:csaps

Alternatively, on the Apps tab, in the Math, Statistics and Optimization group, click Curve
Fitter.

3 On the Curve Fitter tab, in the Data section, click Select Data. In the Select Fitting Data
dialog box, select x as the X data value and y as the Y data value.

4 On the Curve Fitter tab, in the Fit Type section, click the arrow to open the gallery, and click
Interpolant in the Interpolation group.

5 In the Fit Options pane, specify the Method as Cubic spline. The Curve Fitter app fits and
plots the cubic spline interpolant.

6 Rename the fit. In the Table Of Fits pane, double-click the Fit Name value and enter
CubicSplineFit.

7 View the Results pane. Some goodness-of-fit statistics, such as RMSE, are not defined for
Interpolant fits and their value is NaN.

A cubic spline interpolation is defined as a piecewise polynomial that results in a structure of
coefficients (p). The number of “pieces” in the structure is one less than the number of fitted data
points, and the number of coefficients for each piece is four because the polynomial degree is

 Smoothing Splines

6-19

three. You can examine the coefficient structure p if you export your fit to the workspace by
entering CubicSplineFit.p. For more information on the coefficient structure, see
“Constructing and Working with ppform Splines” on page 10-10.

8 Create another fit to compare. Right-click the existing fit CubicSplineFit on the Table Of Fits
tab and select Duplicate "CubicSplineFit". Rename the new fit to SmoothingSplineFit.

9 On the Curve Fitter tab, in the Fit Type section, select a Smoothing Spline fit.

In the Fit Options pane, the Smoothing Parameter defines the level of smoothness. The app
calculates the Smoothing Parameter depending on the data set. For this data set, the default
Smoothing Parameter is close to 1, indicating that the smoothing spline is nearly cubic and
comes very close to passing through each data point.

You can change the level of smoothing by specifying Smoothing Parameter as a nonnegative
scalar in the range [0 1]. Specify Smoothing Parameter as 0 to create a linear polynomial fit.
Specify Smoothing Parameter as 1 to create a piecewise cubic polynomial fit that passes
through all the data points.

10 See the Results pane for numerical results of the smoothing spline fit.

11 Compare the plots for the two fits (cubic spline interpolant fit and smoothing spline fit), which
you created. The two fits are similar for interior points, but diverge at the end points.

Note Your results depend on random start points and may vary from those described.

6 Interpolation and Smoothing

6-20

See Also
Apps
Curve Fitter

Functions
fit

Related Examples
• “Nonparametric Fitting” on page 6-2
• “Filtering and Smoothing Data” on page 6-34

 Smoothing Splines

6-21

Lowess Smoothing
In this section...
“About Lowess Smoothing” on page 6-22
“Select Lowess Fit Interactively” on page 6-22
“Fit Lowess Models Using the fit Function” on page 6-23

About Lowess Smoothing
Use Lowess models to fit smooth surfaces to your data. The names “lowess” and “loess” are derived
from the term “locally weighted scatter plot smooth,” as both methods use locally weighted linear
regression to smooth data. The process is weighted because the toolbox defines a regression weight
function for the data points contained within the span. In addition to the regression weight function,
the Robust option is a weight function that can make the process resistant to outliers.

For more information on these two types of smoothing fit, see “Local Regression Smoothing” on page
6-36.

Select Lowess Fit Interactively
Open the Curve Fitter app by entering curveFitter at the MATLAB command line. Alternatively, on
the Apps tab, in the Math, Statistics and Optimization group, click Curve Fitter.

On the Curve Fitter tab, in the Fit Type section, select a Lowess fit. The app uses locally weighted
linear regression to smooth the data.

In the Fit Options pane, you can try different fit options.

6 Interpolation and Smoothing

6-22

• You can set the regression Polynomial model to Linear or Quadratic.
• You can use Span to set the span as a percentage of the total number of data points in the data

set. The app uses neighboring data points defined within the span to determine each smoothed
value. This smoothing process is called “local.”

Tip Increase the span to make the surface smoother. Reduce the span to make the surface follow
the data more closely.

• You can set the Robust linear least-squares fitting method to Off, LAR, or Bisquare. The local
regression uses the Robust option. Using the Robust weight function can make the smoothing
resistant to outliers. For details, see the Robust name-value argument of the fitoptions
function.

Tip If your data variables have very different scales, select and clear the Center and scale check
box to see the difference in the fit. Normalizing the variables can strongly influence the results of a
lowess fit.

For an example on how to create a lowess fit interactively, see “Surface Fitting to Franke Data” on
page 2-30.

Fit Lowess Models Using the fit Function

This example shows how to use the fit function to fit a Lowess model to data.

 Lowess Smoothing

6-23

Load some data and fit a Lowess model by specifying 'lowess' when calling the fit function.

load franke
f = fit([x y],z,'lowess')

 Locally weighted smoothing linear regression:
 f(x,y) = lowess (linear) smoothing regression computed from p
 Coefficients:
 p = coefficient structure

plot(f,[x y],z)

For a command-line example fitting a Lowess model, see “Fit Smooth Surfaces to Investigate Fuel
Efficiency” on page 6-26.

See Also
Apps
Curve Fitter

Functions
fit

6 Interpolation and Smoothing

6-24

matlab:fit

Related Examples
• “Nonparametric Fitting” on page 6-2
• “Fit Smooth Surfaces to Investigate Fuel Efficiency” on page 6-26
• “Filtering and Smoothing Data” on page 6-34
• “Surface Fitting to Franke Data” on page 2-30

 Lowess Smoothing

6-25

Fit Smooth Surfaces to Investigate Fuel Efficiency

This example shows how to use Curve Fitting Toolbox™ to fit a response surface to some automotive
data to investigate fuel efficiency.

The toolbox provides sample data generated from a GTPOWER predictive combustion engine model.
The model emulates a naturally aspirated spark-ignition, 2-liter, inline 4-cylinder engine. You can fit
smooth lowess surfaces to this data to find minimum fuel consumption.

The data set includes the required variables to model response surfaces:

• Speed is in revolutions per minute (rpm) units.
• Load is the normalized cylinder air mass (the ratio of cylinder aircharge to maximum naturally

aspirated cylinder aircharge at standard temperature and pressure).
• BSFC is the brake-specific fuel consumption in g/KWh. That is, the energy flow in, divided by

mechanical power out (fuel efficiency).

The aim is to model a response surface to find the minimum BSFC as a function of speed and load.
You can use this surface as a table, included as part of a hybrid vehicle optimization algorithm
combining the use of a motor and your engine. To operate the engine as fuel efficiently as possible,
the table must operate the engine near the bottom of the BSFC bowl.

Load and Preprocess Data

Load the data from the XLS spreadsheet. Use the 'basic' command option for non-Windows®
platforms.

Create a variable n that has all the numeric data in one array.

n = xlsread('Engine_Data_SI_NA_2L_I4.xls', 'SI NA 2L I4', '', 'basic');

Extract from the variable n the columns of interest.

SPEED = n(:,2);
LOAD_CMD = n(:,3);
LOAD = n(:,8);
BSFC = n(:,22);

Process the data before fitting, to pick out the minimum BSFC values from each sweep. The data
points are organized in sweeps on speed/load.

Get a list of the speed/load sites:

SL = unique([SPEED, LOAD_CMD], 'rows');
nRuns = size(SL, 1);

For each speed/load site, find the data at the site and extract the actual measured load and the
minimum BSFC.

minBSFC = zeros(nRuns, 1);
Load = zeros(nRuns, 1);
Speed = zeros(nRuns, 1);
for i = 1:nRuns
 idx = SPEED == SL(i,1) & LOAD_CMD == SL(i,2);

6 Interpolation and Smoothing

6-26

 minBSFC(i) = min(BSFC(idx));
 Load(i) = mean(LOAD(idx));
 Speed(i) = mean(SPEED(idx));
end

Fit a Surface

Fit a surface of fuel efficiency to the preprocessed data.

f1 = fit([Speed, Load], minBSFC, 'Lowess', 'Normalize', 'on')

 Locally weighted smoothing linear regression:
 f1(x,y) = lowess (linear) smoothing regression computed from p
 where x is normalized by mean 3407 and std 1214
 and where y is normalized by mean 0.5173 and std 0.1766
 Coefficients:
 p = coefficient structure

Plot Fit

plot(f1, [Speed, Load], minBSFC);
xlabel('Speed [RPM]');
ylabel('Load [%]');
zlabel('Minimum BSFC [g/Kwh]');

 Fit Smooth Surfaces to Investigate Fuel Efficiency

6-27

Remove Problem Points

Review the resulting plot.

There are points where BSFC is negative because this data is generated by an engine simulation.

Remove those problem data points by keeping points in the range [0, Inf].

out = excludedata(Speed, minBSFC, 'Range', [0, Inf]);
f2 = fit([Speed, Load], minBSFC, 'Lowess', ...
 'Normalize', 'on', 'Exclude', out)

 Locally weighted smoothing linear regression:
 f2(x,y) = lowess (linear) smoothing regression computed from p
 where x is normalized by mean 3443 and std 1187
 and where y is normalized by mean 0.521 and std 0.175
 Coefficients:
 p = coefficient structure

Plot the new fit. Note that the excluded points are plotted as red crosses.

plot(f2, [Speed, Load], minBSFC, 'Exclude', out);
xlabel('Speed [RPM]');
ylabel('Load [%]');
zlabel('Minimum BSFC [g/Kwh]');

6 Interpolation and Smoothing

6-28

Zoom In

Zoom in on the part of the z-axis of interest.

zlim([0, max(minBSFC)])

You want to operate the engine efficiently, so create a contour plot to see the region where the BSFC
is low. Use the plot function, and specify the name/value parameter pair 'style','Contour'.

plot(f2, [Speed, Load], minBSFC, 'Exclude', out, 'Style', 'Contour');
xlabel('Speed [RPM]');
ylabel('Load [%]');
colorbar

 Fit Smooth Surfaces to Investigate Fuel Efficiency

6-29

Create a Table from the Surface

Generate a table by evaluating the model f2 over a grid of points.

Create variables for the table breakpoints.

speedbreakpoints = linspace(1000, 5500, 17);
loadbreakpoints = linspace(0.2, 0.8, 13);

To generate values for the table, evaluate the model over a grid of points.

[tSpeed, tLoad] = meshgrid(speedbreakpoints, loadbreakpoints);
tBSFC = f2(tSpeed, tLoad);

Examine the rows and columns of the table at the command line.

tBSFC(1:2:end,1:2:end)

ans =

 Columns 1 through 7

 722.3280 766.7608 779.4296 757.4574 694.5378 624.4095 576.5235
 503.9880 499.9201 481.7240 458.2803 427.7338 422.1099 412.1624
 394.7579 364.3421 336.1811 330.1550 329.1635 328.1810 329.1144
 333.7740 307.7736 295.1777 291.2068 290.3637 290.0173 287.8672
 295.9729 282.7567 273.8287 270.8869 269.8485 271.0547 270.5502

6 Interpolation and Smoothing

6-30

 273.7512 264.5167 259.7631 257.9215 256.9350 258.3228 258.6638
 251.5652 247.6746 247.2747 247.4699 247.3570 248.2433 248.8139

 Columns 8 through 9

 532.1533 466.9610
 396.3209 398.0199
 335.3871 346.3882
 286.3077 291.0075
 269.6837 272.2054
 258.0298 260.5269
 249.0083 250.4165

Plot the Table Against the Original Model

The grid on the model surface shows the table breakpoints.

h = plot(f2);
h.EdgeColor = 'none';
hold on
mesh(tSpeed, tLoad, tBSFC, ...
 'LineStyle', '-', 'LineWidth', 2, 'EdgeColor', 'k', ...
 'FaceColor', 'none', 'FaceAlpha', 1);
hold off
xlabel('Speed [RPM]');
ylabel('Load [%]');
zlabel('Minimum BSFC [g/Kwh]');

 Fit Smooth Surfaces to Investigate Fuel Efficiency

6-31

Check the Table Accuracy

View the difference between the model and the table by plotting the difference between them on a
finer grid. Then, use this difference in prediction accuracy between the table and the model to
determine the most efficient table size for your accuracy requirements.

The following code evaluates the model over a finer grid and plots the difference between the model
and the table.

[tfSpeed, tfLoad] = meshgrid(...
 linspace(1000, 5500, 8*17+1), ...
 linspace(0.2, 0.8, 8*13+1));
tfBSFC_model = f2(tfSpeed, tfLoad);
tfBSFC_table = interp2(tSpeed, tLoad, tBSFC, tfSpeed, tfLoad, 'linear');
tfDiff = tfBSFC_model - tfBSFC_table;

surf(tfSpeed, tfLoad, tfDiff, 'LineStyle', 'none');
hold on
mesh(tSpeed, tLoad, zeros(size(tBSFC)), ...
 'LineStyle', '-', 'LineWidth', 2, 'EdgeColor', 'k', ...
 'FaceColor', 'none', 'FaceAlpha', 1);
hold off
axis tight
xlabel('Speed [RPM]');
ylabel('Load [%]');
zlabel('Difference between model and table [g/Kwh]');
title(sprintf('Max difference: %g', max(abs(tfDiff(:)))));

6 Interpolation and Smoothing

6-32

Create a Table Array Including Breakpoint Values

After creating a table by evaluating a model fit over a grid of points, it can be useful to export your
table data from MATLAB. Before exporting, create a table array that includes the breakpoint values in
the first row and column. The following command reshapes your data to this table format:

• X (speedbreakpoints) is a (1 x M) vector
• Y (loadbreakpoints) is an (N x 1) vector
• Z (tBSFC) is an (M x N) matrix

table = [
 {'Load\Speed'}, num2cell(speedbreakpoints(:).')
 num2cell(loadbreakpoints (:)), num2cell(tBSFC)
];

Export Table to Spreadsheet File

You can use the xlswrite function to export your table data to a new Excel Spreadsheet. Execute
the following command to create a spreadsheet file.

xlswrite('tabledata.xlsx', table)

Create a Lookup Table Block

If you have Simulink® software, you can create a Look Up Table block as follows. Execute the
following code to try it out.

1. Create a model with a 2-D Lookup Table block.

simulink
new_system('my_model')
open_system('my_model')
add_block('simulink/Lookup Tables/2-D Lookup Table', 'my_model/surfaceblock')

2. Populate the Lookup Table with speed breakpoints, load breakpoints, and a lookup table.

set_param('my_model/surfaceblock',...
 'BreakpointsForDimension1', 'loadbreakpoints',...
 'BreakpointsForDimension2', 'speedbreakpoints',...
 'Table', 'tBSFC');

3. Examine the populated Lookup Table block.

 Fit Smooth Surfaces to Investigate Fuel Efficiency

6-33

Filtering and Smoothing Data
In this section...
“About Data Filtering and Smoothing” on page 6-34
“Moving Average Filtering” on page 6-34
“Savitzky-Golay Filtering” on page 6-35
“Local Regression Smoothing” on page 6-36
“Example: Smoothing Data” on page 6-40
“Example: Smoothing Data Using Loess and Robust Loess” on page 6-41

About Data Filtering and Smoothing
This topic explains how to smooth response data using this function. With the smooth function, you
can use optional methods for moving average, Savitzky-Golay filters, and local regression with and
without weights and robustness (lowess, loess, rlowess and rloess). See smoothdata for more
functionality, including support for matrices, tables, and timetables, as well as moving median and
Gaussian methods.

Moving Average Filtering
A moving average filter smooths data by replacing each data point with the average of the
neighboring data points defined within the span. This process is equivalent to lowpass filtering with
the response of the smoothing given by the difference equation

ys(i) = 1
2N + 1 y(i + N) + y(i + N − 1) + ... + y(i− N)

where ys(i) is the smoothed value for the ith data point, N is the number of neighboring data points
on either side of ys(i), and 2N+1 is the span.

The moving average smoothing method used by Curve Fitting Toolbox follows these rules:

• The span must be odd.
• The data point to be smoothed must be at the center of the span.
• The span is adjusted for data points that cannot accommodate the specified number of neighbors

on either side.
• The end points are not smoothed because a span cannot be defined.

Note that you can use filter function to implement difference equations such as the one shown
above. However, because of the way that the end points are treated, the toolbox moving average
result will differ from the result returned by filter. Refer to Difference Equations and Filtering for
more information.

For example, suppose you smooth data using a moving average filter with a span of 5. Using the rules
described above, the first four elements of ys are given by

ys(1) = y(1)
ys(2) = (y(1)+y(2)+y(3))/3
ys(3) = (y(1)+y(2)+y(3)+y(4)+y(5))/5
ys(4) = (y(2)+y(3)+y(4)+y(5)+y(6))/5

6 Interpolation and Smoothing

6-34

Note that ys(1), ys(2), ... ,ys(end) refer to the order of the data after sorting, and not necessarily
the original order.

The smoothed values and spans for the first four data points of a generated data set are shown below.

Plot (a) indicates that the first data point is not smoothed because a span cannot be constructed.
Plot (b) indicates that the second data point is smoothed using a span of three. Plots (c) and (d)
indicate that a span of five is used to calculate the smoothed value.

Savitzky-Golay Filtering
Savitzky-Golay filtering can be thought of as a generalized moving average. You derive the filter
coefficients by performing an unweighted linear least-squares fit using a polynomial of a given
degree. For this reason, a Savitzky-Golay filter is also called a digital smoothing polynomial filter or a
least-squares smoothing filter. Note that a higher degree polynomial makes it possible to achieve a
high level of smoothing without attenuation of data features.

The Savitzky-Golay filtering method is often used with frequency data or with spectroscopic (peak)
data. For frequency data, the method is effective at preserving the high-frequency components of the
signal. For spectroscopic data, the method is effective at preserving higher moments of the peak such
as the line width. By comparison, the moving average filter tends to filter out a significant portion of
the signal's high-frequency content, and it can only preserve the lower moments of a peak such as the
centroid. However, Savitzky-Golay filtering can be less successful than a moving average filter at
rejecting noise.

The Savitzky-Golay smoothing method used by Curve Fitting Toolbox software follows these rules:

 Filtering and Smoothing Data

6-35

• The span must be odd.
• The polynomial degree must be less than the span.
• The data points are not required to have uniform spacing.

Normally, Savitzky-Golay filtering requires uniform spacing of the predictor data. However, the
Curve Fitting Toolbox algorithm supports nonuniform spacing. Therefore, you are not required to
perform an additional filtering step to create data with uniform spacing.

The plot shown below displays generated Gaussian data and several attempts at smoothing using the
Savitzky-Golay method. The data is very noisy and the peak widths vary from broad to narrow. The
span is equal to 5% of the number of data points.

Plot (a) shows the noisy data. To more easily compare the smoothed results, plots (b) and (c) show
the data without the added noise.

Plot (b) shows the result of smoothing with a quadratic polynomial. Notice that the method performs
poorly for the narrow peaks. Plot (c) shows the result of smoothing with a quartic polynomial. In
general, higher degree polynomials can more accurately capture the heights and widths of narrow
peaks, but can do poorly at smoothing wider peaks.

Local Regression Smoothing
• “Lowess and Loess” on page 6-37
• “The Local Regression Method” on page 6-37
• “Robust Local Regression” on page 6-39

6 Interpolation and Smoothing

6-36

Lowess and Loess

The names “lowess” and “loess” are derived from the term “locally weighted scatter plot smooth,” as
both methods use locally weighted linear regression to smooth data.

The smoothing process is considered local because, like the moving average method, each smoothed
value is determined by neighboring data points defined within the span. The process is weighted
because a regression weight function is defined for the data points contained within the span. In
addition to the regression weight function, you can use a robust weight function, which makes the
process resistant to outliers. Finally, the methods are differentiated by the model used in the
regression: lowess uses a linear polynomial, while loess uses a quadratic polynomial.

The local regression smoothing methods used by Curve Fitting Toolbox software follow these rules:

• The span can be even or odd.
• You can specify the span as a percentage of the total number of data points in the data set. For

example, a span of 0.1 uses 10% of the data points.

The Local Regression Method

The local regression smoothing process follows these steps for each data point:

1 Compute the regression weights for each data point in the span. The weights are given by the
tricube function shown below.

wi = 1−
x− xi
d(x)

3 3

x is the predictor value associated with the response value to be smoothed, xi are the nearest
neighbors of x as defined by the span, and d(x) is the distance along the abscissa from x to the
most distant predictor value within the span. The weights have these characteristics:

• The data point to be smoothed has the largest weight and the most influence on the fit.
• Data points outside the span have zero weight and no influence on the fit.

2 A weighted linear least-squares regression is performed. For lowess, the regression uses a first
degree polynomial. For loess, the regression uses a second degree polynomial.

3 The smoothed value is given by the weighted regression at the predictor value of interest.

If the smooth calculation involves the same number of neighboring data points on either side of the
smoothed data point, the weight function is symmetric. However, if the number of neighboring points
is not symmetric about the smoothed data point, then the weight function is not symmetric. Note that
unlike the moving average smoothing process, the span never changes. For example, when you
smooth the data point with the smallest predictor value, the shape of the weight function is truncated
by one half, the leftmost data point in the span has the largest weight, and all the neighboring points
are to the right of the smoothed value.

The weight function for an end point and for an interior point is shown below for a span of 31 data
points.

 Filtering and Smoothing Data

6-37

Using the lowess method with a span of five, the smoothed values and associated regressions for the
first four data points of a generated data set are shown below.

Notice that the span does not change as the smoothing process progresses from data point to data
point. However, depending on the number of nearest neighbors, the regression weight function might

6 Interpolation and Smoothing

6-38

not be symmetric about the data point to be smoothed. In particular, plots (a) and (b) use an
asymmetric weight function, while plots (c) and (d) use a symmetric weight function.

For the loess method, the graphs would look the same except the smoothed value would be generated
by a second-degree polynomial.

Robust Local Regression

If your data contains outliers, the smoothed values can become distorted, and not reflect the behavior
of the bulk of the neighboring data points. To overcome this problem, you can smooth the data using
a robust procedure that is not influenced by a small fraction of outliers. For a description of outliers,
refer to “Residual Analysis” on page 7-47.

Curve Fitting Toolbox software provides a robust version for both the lowess and loess smoothing
methods. These robust methods include an additional calculation of robust weights, which is resistant
to outliers. The robust smoothing procedure follows these steps:

1 Calculate the residuals from the smoothing procedure described in the previous section.
2 Compute the robust weights for each data point in the span. The weights are given by the

bisquare function,

wi = 1− (ri/6MAD)2 2, ri < 6MAD,

0, ri ≥ 6MAD,

where ri is the residual of the ith data point produced by the regression smoothing procedure,
and MAD is the median absolute deviation of the residuals,

MAD = median r .

The median absolute deviation is a measure of how spread out the residuals are. If ri is small
compared to 6MAD, then the robust weight is close to 1. If ri is greater than 6MAD, the robust
weight is 0 and the associated data point is excluded from the smooth calculation.

3 Smooth the data again using the robust weights. The final smoothed value is calculated using
both the local regression weight and the robust weight.

4 Repeat the previous two steps for a total of five iterations.

The smoothing results of the lowess procedure are compared below to the results of the robust
lowess procedure for a generated data set that contains a single outlier. The span for both procedures
is 11 data points.

 Filtering and Smoothing Data

6-39

Plot (a) shows that the outlier influences the smoothed value for several nearest neighbors. Plot (b)
suggests that the residual of the outlier is greater than six median absolute deviations. Therefore, the
robust weight is zero for this data point. Plot (c) shows that the smoothed values neighboring the
outlier reflect the bulk of the data.

Example: Smoothing Data
Load the data in count.dat:

load count.dat

The 24-by-3 array count contains traffic counts at three intersections for each hour of the day.

First, use a moving average filter with a 5-hour span to smooth all of the data at once (by linear
index) :

c = smooth(count(:));
C1 = reshape(c,24,3);

Plot the original data and the smoothed data:

subplot(3,1,1)
plot(count,':');
hold on
plot(C1,'-');
title('Smooth C1 (All Data)')

Second, use the same filter to smooth each column of the data separately:

C2 = zeros(24,3);
for I = 1:3,

6 Interpolation and Smoothing

6-40

 C2(:,I) = smooth(count(:,I));
end

Again, plot the original data and the smoothed data:

subplot(3,1,2)
plot(count,':');
hold on
plot(C2,'-');
title('Smooth C2 (Each Column)')

Plot the difference between the two smoothed data sets:

subplot(3,1,3)
plot(C2 - C1,'o-')
title('Difference C2 - C1')

Note the additional end effects from the 3-column smooth.

Example: Smoothing Data Using Loess and Robust Loess
Create noisy data with outliers:

x = 15*rand(150,1);
y = sin(x) + 0.5*(rand(size(x))-0.5);
y(ceil(length(x)*rand(2,1))) = 3;

Smooth the data using the loess and rloess methods with a span of 10%:

yy1 = smooth(x,y,0.1,'loess');
yy2 = smooth(x,y,0.1,'rloess');

Plot original data and the smoothed data.

[xx,ind] = sort(x);
subplot(2,1,1)
plot(xx,y(ind),'b.',xx,yy1(ind),'r-')
set(gca,'YLim',[-1.5 3.5])

 Filtering and Smoothing Data

6-41

legend('Original Data','Smoothed Data Using ''loess''',...
 'Location','NW')
subplot(2,1,2)
plot(xx,y(ind),'b.',xx,yy2(ind),'r-')
set(gca,'YLim',[-1.5 3.5])
legend('Original Data','Smoothed Data Using ''rloess''',...
 'Location','NW')

Note that the outliers have less influence on the robust method.

See Also
smooth | smoothdata

Related Examples
• “Nonparametric Fitting” on page 6-2
• “Smoothing Splines” on page 6-14
• “Lowess Smoothing” on page 6-22

6 Interpolation and Smoothing

6-42

Fit Postprocessing

• “Explore and Customize Plots” on page 7-2
• “Remove Outliers” on page 7-8
• “Select Validation Data” on page 7-12
• “Generate Code and Export Fits to the Workspace” on page 7-13
• “Evaluate a Curve Fit” on page 7-16
• “Evaluate a Surface Fit” on page 7-24
• “Compare Fits Programmatically” on page 7-31
• “Evaluating Goodness of Fit” on page 7-43
• “Residual Analysis” on page 7-47
• “Confidence and Prediction Bounds” on page 7-51
• “Differentiating and Integrating a Fit” on page 7-56

7

Explore and Customize Plots
In this section...
“Displaying Fit and Residual Plots” on page 7-2
“Viewing Surface Plots and Contour Plots” on page 7-3
“Using Zoom, Pan, Data Cursor, and Outlier Exclusion” on page 7-4
“Customizing the Fit Display” on page 7-5
“Print to MATLAB Figures” on page 7-6

Displaying Fit and Residual Plots
In the Curve Fitter app, within each fit figure, you can display up to three plots simultaneously to
examine the fit. Use the buttons in the Visualization section of the Curve Fitter tab to select the
type of plot to display.

• Click Fit Plot to show the curve or surface fit.
• Click Residuals Plot to show the errors between your fit and your data.
• Click Contour Plot to show a contour map of a surface fit (not available for curve fits).

This example shows two plots: a plot with a curve fit and prediction bounds and a residuals plot.

7 Fit Postprocessing

7-2

When you select Prediction Bounds in the Visualization section of the Curve Fitter tab, two
additional curves (or surfaces) are plotted to show the prediction bounds on both sides of your model
fit.

Choose which bounds to display: None, 90%, 95%, 99%, or Custom. The custom option opens a dialog
box where you can enter the required confidence level.

See also “Customizing the Fit Display” on page 7-5.

Residuals Plot

On the residuals plot, you can view the errors between your fit and your data, and you can remove
outliers. See “Remove Outliers” on page 7-8. This example shows a residuals plot with some
excluded outliers.

Viewing Surface Plots and Contour Plots
If you fit a surface, then the fit plot shows your surface fit. Click-and-drag rotation is the default
mouse mode for surface plots in the Curve Fitter app. Rotate mode in the Curve Fitter app is the
same as using the Rotate 3D button in the axes toolbar of MATLAB figures. You can change the mouse
mode for manipulating plots just as for curve plots. See “Using Zoom, Pan, Data Cursor, and Outlier
Exclusion” on page 7-4.

Tip To return to rotate mode, turn off any other mouse mode.

If you turn on a mouse mode for zoom, pan, data cursor, or exclude outliers, turn the mode off again
to return to rotate mode. For example, click the Zoom in button on the axes toolbar a second time to
clear it and return to rotate mode.

If you have a surface fit, use the contour plot to examine a contour map of your surface. Contour plots
are not available for curve fits. On a surface fit, a contour plot makes it easier to see points that have
the same height.

 Explore and Customize Plots

7-3

For polynomial and custom fits, you also can display prediction bounds. On the Curve Fitter tab, in
the Visualization section, select a value from the Prediction Bounds list. When you display
prediction bounds, two additional surfaces are plotted to show the prediction bounds on both sides of
your model fit. The previous example shows prediction bounds. You can see three surfaces on the
plot. The top and bottom surfaces show the prediction bounds at the specified confidence level on
either side of your model fit surface.

You can also switch your surface plot to a 2-D plot. Your plot cursor must be in rotate mode. Clear any
other mouse mode, if necessary. Then, right-click the plot to select Go to X-Y view, Go to X-Z view,
Go to Y-Z view, or Rotate Options. All these context menu options are standard MATLAB 3-D plot
tools. For more information, see “Interactively Explore Plotted Data”.

Using Zoom, Pan, Data Cursor, and Outlier Exclusion
You can change mouse mode for manipulating plots. Use the plot axes toolbar to switch to zoom in,
zoom out, pan, data cursor, or exclude outliers modes. The Curve Fitter app remembers your selected
mouse mode in each fit figure within a session.

Use the axes toolbar to toggle mouse mode in your plots:

• The Zoom in, Zoom out, Pan, and Data cursor buttons are similar to standard MATLAB axes
toolbar options.

7 Fit Postprocessing

7-4

On surfaces, turn all these modes off to return to rotation mode. For surface plots, rotation is the
default mouse mode in the Curve Fitter app. See “Viewing Surface Plots and Contour Plots” on
page 7-3.

• Clicking the Data cursor button enables data cursor mode, where you can click points to display
data tips.

• Clicking the Exclude outliers button enables exclude outliers mode, where you can click points to
remove or include in your fit. See “Remove Outliers” on page 7-8.

Customizing the Fit Display
To customize your plot display, use the plot axes toolbar, the options in the Visualization section of
the Curve Fitter tab, or the Document Actions arrow located to the far right of the fit figure tabs.
See also “Create Multiple Fits in Curve Fitter App” on page 2-13.

Axes Toolbar

Use the plot axes toolbar buttons to change the display of the plot legend and grid marks.

• The Legend button toggles the display of the legend on all plots in the currently selected fit tab.
• The Grid button toggles the display of the grid on all plots in the currently selected fit tab.

Visualization Section

Use the options in the Visualization section of the Curve Fitter tab to customize the display of plots
and prediction bounds.

• Fit Plot toggles the display of the fit plot in the currently selected fit figure. This button is
disabled if the fit plot is the only displayed plot.

• Residuals Plot toggles the display of the residuals plot in the currently selected fit tab. This
button is disabled if the residuals plot is the only displayed plot.

• Contour Plot toggles the display of the contour plot in the currently selected fit tab. This button
is disabled if the contour plot is the only displayed plot.

• The Prediction Bounds list lets you choose which bounds to display: None, 90%, 95%, 99%, or
Custom. The custom option opens a dialog box where you can enter the required confidence level.

Document Actions Arrow

To compare plots and see multiple fits simultaneously, you can drag and drop the fit figure tabs.
Alternatively, you can click the Document Actions arrow located to the far right of the fit figure tabs.
For example, select the Tile All option and specify the number and position of tiles you want to
display.

Tip For more space to view and compare plots, as shown next, you can drag and drop the Fit
Options, Results, and Table Of Fits panes.

 Explore and Customize Plots

7-5

See also “Displaying Multiple Fits Simultaneously” on page 2-13.

Print to MATLAB Figures
In the Curve Fitter app, you can produce MATLAB figures from the results of curve fitting. On the
Curve Fitter tab, in the Export section, click Export and select Export to Figure. The app creates
a figure containing all plots for the current fit. You can then use the interactive plotting tools to edit
and export the figures in different formats.

See Also

Related Examples
• “Remove Outliers” on page 7-8
• “Compare Fits in Curve Fitter App” on page 2-17

7 Fit Postprocessing

7-6

• “Create Multiple Fits in Curve Fitter App” on page 2-13
• “Generate Code and Export Fits to the Workspace” on page 7-13
• “Compare Fits Programmatically” on page 7-31

 Explore and Customize Plots

7-7

Remove Outliers
In this section...
“Remove Outliers Interactively” on page 7-8
“Exclude Data Ranges” on page 7-8
“Remove Outliers Programmatically” on page 7-8

Remove Outliers Interactively
To remove outliers in the Curve Fitter app, follow these steps:

1
In the plot axes toolbar, click the Exclude outliers button .

When you move the mouse cursor to the plot, it changes to a cross-hair to show that you are in
outlier selection mode.

2 Click a point that you want to exclude in the fit plot or residuals plot. Alternatively, click and drag
to define a rectangle and remove all enclosed points.

A removed plot point becomes a red cross in the plots. If you have Auto fitting selected in the Fit
section of the Curve Fitter tab, the Curve Fitter app refits the surface without the point.
Otherwise, if you have Manual fitting selected, you can click Fit to refit.

3 Repeat the process for all points you want to exclude.

When removing outliers from surface fits, it can be helpful to display a 2-D residuals plot for
examining and removing outliers. With your plot cursor in rotation mode, right-click the plot to select
Go to X-Y view, Go to X-Z view, or Go to Y-Z view.

To replace individual excluded points in the fit, click an excluded point again in outlier selection mode
(that is, with the Exclude outliers button toggled on in the axes toolbar). To replace all excluded
points in the fit, right-click and select Clear all exclusions.

In surface plots, to return to rotation mode, click the Exclude outliers button again to turn off outlier
selection mode.

Exclude Data Ranges
To exclude sections of data by range in the Curve Fitter app, follow these steps:

1 On the Curve Fitter tab, in the Data section, click Exclusion Rules.
2 In the Exclusion Rules dialog box, specify data to exclude. Enter numbers in any of the boxes to

define beginning or ending intervals to exclude in the X, Y, or Z data.

The Curve Fitter app displays shaded pink areas on the plots to show excluded ranges. Excluded
points become red.

Remove Outliers Programmatically

7 Fit Postprocessing

7-8

This example shows how to remove outliers when curve fitting programmatically, using the 'Exclude'
name/value pair argument with the fit or fitoptions functions. You can plot excluded data by supplying
an Exclude or outliers argument with the plot function.

Exclude Data Using a Simple Rule

For a simple example, load data and fit a Gaussian distribution, excluding some data with an
expression. Then plot the fit, data and the excluded points.

[x, y] = titanium;
f1 = fit(x',y','gauss2','Exclude',x<800);
plot(f1,x,y,x<800)

Exclude Data by Distance from the Model

It can be useful to exclude outliers by distance from the model, using standard deviations. The
following example shows how to identify outliers using distance greater than 1.5 standard deviations
from the model, and compares with a robust fit which gives lower weight to outliers.

Create a baseline sinusoidal signal:

xdata = (0:0.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal with non-constant variance:

% Response-dependent Gaussian noise
gnoise = y0.*randn(size(y0));

 Remove Outliers

7-9

% Salt-and-pepper noise
spnoise = zeros(size(y0));
p = randperm(length(y0));
sppoints = p(1:round(length(p)/5));
spnoise(sppoints) = 5*sign(y0(sppoints));

ydata = y0 + gnoise + spnoise;

Fit the noisy data with a baseline sinusoidal model:

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Identify outliers as points at a distance greater than 1.5 standard deviations from the baseline model,
and refit the data with the outliers excluded:

fdata = feval(fit1,xdata);
I = abs(fdata - ydata) > 1.5*std(ydata);
outliers = excludedata(xdata,ydata,'indices',I);

fit2 = fit(xdata,ydata,f,'StartPoint',[1 1],...
 'Exclude',outliers);

Compare the effect of excluding the outliers with the effect of giving them lower bisquare weight in a
robust fit:

fit3 = fit(xdata,ydata,f,'StartPoint',[1 1],'Robust','on');

Plot the data, the outliers, and the results of the fits:

plot(fit1,'r-',xdata,ydata,'k.',outliers,'m*')
hold on
plot(fit2,'c--')
plot(fit3,'b:')
xlim([0 2*pi])

7 Fit Postprocessing

7-10

See Also
fit | excludedata

Related Examples
• “Explore and Customize Plots” on page 7-2

 Remove Outliers

7-11

Select Validation Data
To specify validation data for the currently selected fit in the Curve Fitter app, follow these steps:

1 On the Curve Fitter tab, in the Data section, click Validation Data. The app opens the Select
Validation Data dialog box.

2 In the dialog box, select variables for X data and Y data (and Z data for surfaces).

When you select two or three variables, depending on whether your data is for a curve or a
surface, the app calculates validation statistics (SSE and RMSE) and displays them in the
Results and Table Of Fits panes. For definitions of these statistics, see “Using the Statistics in
the Table of Fits” on page 2-15. The app displays the validation data points on the fit plot and the
residuals plot along with the original data.

3 Close the dialog box.

7 Fit Postprocessing

7-12

Generate Code and Export Fits to the Workspace
In this section...
“Generating Code from the Curve Fitter App” on page 7-13
“Exporting a Fit to the Workspace” on page 7-14

Generating Code from the Curve Fitter App
You can generate and use MATLAB code from an interactive session in the Curve Fitter app. In this
way, you can transform your interactive analysis into reusable functions for batch processing of
multiple data sets. You can use the generated file without modification, or you can edit and customize
the file as needed.

To generate code for the currently selected fit and its opened plots in your Curve Fitter app session,
follow these steps:

1 On the Curve Fitter tab, in the Export section, click Export and select Generate Code.

The Curve Fitter app generates code from your session and displays the file in the MATLAB
Editor. The file includes the currently selected fit in your session and its opened plots. The file
captures the following information:

• Name of the fit and its variables
• Fit settings and options
• Plots
• Curve or surface fitting object and the function used to create the fit:

• cfit or sfit object representing the fit
• A structure with goodness-of-fit information

2 Save the file.

To recreate your fit and its plots, call the file from the command line with your original data as input
arguments. You also can call the file with new data.

For example, enter the following code, where a, b, and c are the variable names and myFileName is
the file name.

[fitresult,gof] = myFileName(a,b,c)

Calling the file from the command line does not recreate your Curve Fitter app session. When you call
the file, you get the same plots you had in your Curve Fitter app session in a standard MATLAB figure
window. For example, if your fit in the Curve Fitter app session displayed fit, residuals, and contour
plots, all three plots appear in a single figure window.

Curve Fitting Functions

The curve and surface fit objects (cfit and sfit) store the results from a fitting operation, making it
easy to plot and analyze fits at the command line.

To learn about available functions for working with fits, see “Curve and Surface Fitting” on page 3-2.

 Generate Code and Export Fits to the Workspace

7-13

Exporting a Fit to the Workspace
To export a fit to the MATLAB workspace, follow these steps:

1 Select a fit and save it to the MATLAB workspace using one of these methods:

• Right-click the fit in the Table Of Fits pane, and select Save "myfitname" to Workspace.
• On the Curve Fitter tab, in the Export section, click Export and select Export to

Workspace.

The app opens the Save Fit to MATLAB Workspace dialog box.

2 Edit the names as appropriate. If you previously exported fits, the app automatically adds a
numbered suffix to the default names to avoid overwriting existing names.

3 Choose which options you want to export by selecting the check boxes. Check box options are as
follows:

• Save fit to MATLAB object named — This option creates a cfit or sfit object, that
encapsulates the result of fitting a curve or surface to data. You can examine the fit
coefficients at the command line.

fittedmodel

 Linear model Poly22:
 fittedmodel(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2
 where x is normalized by mean 1982 and std 868.6
 and where y is normalized by mean 0.4972 and std 0.2897
 Coefficients (with 95% confidence bounds):
 p00 = 0.4227 (0.3837, 0.4616)
 p10 = -0.137 (-0.1579, -0.1161)
 p01 = -0.1913 (-0.2122, -0.1705)
 p20 = 0.0234 (-2.895e-05, 0.04682)
 p11 = 0.067 (0.04613, 0.08787)
 p02 = -0.02946 (-0.05288, -0.006043)

You also can treat the cfit or sfit object as a function to make predictions or evaluate the
fit at values of X (or X and Y). See cfit and sfit.

• Save goodness of fit to MATLAB struct named — This option creates a structure that
contains statistical information about the fit.

goodness

goodness =

7 Fit Postprocessing

7-14

 struct with fields:

 sse: 9.4302
 rsquare: 0.6565
 dfe: 287
 adjrsquare: 0.6505
 rmse: 0.1813

• Save fit output to MATLAB struct named — This option creates a structure that contains
information such as number of observations, number of parameters, residuals, and so on.

output

output =

 struct with fields:

 numobs: 293
 numparam: 6
 residuals: [293×1 double]
 Jacobian: [293×6 double]
 exitflag: 1
 algorithm: 'QR factorization and solve'
 iterations: 1

Note The goodness-of-fit and output structures are outputs of the fit function.
4 Click OK to save the fit options to the workspace.

After you save your fit to the workspace, you can use fit postprocessing functions. For an example,
see “Analyzing Best Fit in the Workspace” on page 2-25. For more information and a list of functions,
see “Fit Postprocessing”.

See Also

Related Examples
• “Evaluate a Curve Fit” on page 7-16
• “Evaluate a Surface Fit” on page 7-24

 Generate Code and Export Fits to the Workspace

7-15

Evaluate a Curve Fit

This example shows how to work with a curve fit.

Load Data and Fit a Polynomial Curve
load census
curvefit = fit(cdate,pop,'poly3','normalize','on')

curvefit =
 Linear model Poly3:
 curvefit(x) = p1*x^3 + p2*x^2 + p3*x + p4
 where x is normalized by mean 1890 and std 62.05
 Coefficients (with 95% confidence bounds):
 p1 = 0.921 (-0.9743, 2.816)
 p2 = 25.18 (23.57, 26.79)
 p3 = 73.86 (70.33, 77.39)
 p4 = 61.74 (59.69, 63.8)

The output displays the fitted model equation, the fitted coefficients, and the confidence bounds for
the fitted coefficients.

Plot the Fit, Data, Residuals, and Prediction Bounds
plot(curvefit,cdate,pop)

Plot the residuals fit.

7 Fit Postprocessing

7-16

plot(curvefit,cdate,pop,'Residuals')

Plot the prediction bounds on the fit.

plot(curvefit,cdate,pop,'predfunc')

 Evaluate a Curve Fit

7-17

Evaluate the Fit at a Specified Point

Evaluate the fit at a specific point by specifying a value for x , using this form: y =
fittedmodel(x).

curvefit(1991)

ans = 252.6690

Evaluate the Fit Values at Many Points

Evaluate the model at a vector of values to extrapolate to the year 2050.

xi = (2000:10:2050).';
curvefit(xi)

ans = 6×1

 276.9632
 305.4420
 335.5066
 367.1802
 400.4859
 435.4468

Get prediction bounds on those values.

ci = predint(curvefit,xi)

7 Fit Postprocessing

7-18

ci = 6×2

 267.8589 286.0674
 294.3070 316.5770
 321.5924 349.4208
 349.7275 384.6329
 378.7255 422.2462
 408.5919 462.3017

Plot the fit and prediction intervals across the extrapolated fit range. By default, the fit is plotted over
the range of the data. To see values extrapolated from the fit, set the upper x-limit of the axes to 2050
before plotting the fit. To plot prediction intervals, use predobs or predfun as the plot type.

plot(cdate,pop,'o')
xlim([1900,2050])
hold on
plot(curvefit,'predobs')
hold off

Get the Model Equation

Enter the fit name to display the model equation, the fitted coefficients, and the confidence bounds
for the fitted coefficients.

curvefit

 Evaluate a Curve Fit

7-19

curvefit =
 Linear model Poly3:
 curvefit(x) = p1*x^3 + p2*x^2 + p3*x + p4
 where x is normalized by mean 1890 and std 62.05
 Coefficients (with 95% confidence bounds):
 p1 = 0.921 (-0.9743, 2.816)
 p2 = 25.18 (23.57, 26.79)
 p3 = 73.86 (70.33, 77.39)
 p4 = 61.74 (59.69, 63.8)

To get only the model equation, use formula.

formula(curvefit)

ans =
'p1*x^3 + p2*x^2 + p3*x + p4'

Get Coefficient Names and Values

Specify a coefficient by name.

p1 = curvefit.p1

p1 = 0.9210

p2 = curvefit.p2

p2 = 25.1834

Get all the coefficient names. Look at the fit equation (for example, f(x) = p1*x^3+...) to see the
model terms for each coefficient.

coeffnames(curvefit)

ans = 4x1 cell
 {'p1'}
 {'p2'}
 {'p3'}
 {'p4'}

Get all the coefficient values.

coeffvalues(curvefit)

ans = 1×4

 0.9210 25.1834 73.8598 61.7444

Get Confidence Bounds on the Coefficients

Use confidence bounds on coefficients to help you evaluate and compare fits. The confidence bounds
on the coefficients determine their accuracy. Bounds that are far apart indicate uncertainty. If the
bounds cross zero for linear coefficients, this means you cannot be sure that these coefficients differ
from zero. If some model terms have coefficients of zero, then they are not helping with the fit.

confint(curvefit)

7 Fit Postprocessing

7-20

ans = 2×4

 -0.9743 23.5736 70.3308 59.6907
 2.8163 26.7931 77.3888 63.7981

Examine Goodness-of-Fit Statistics

To get goodness-of-fit statistics at the command line, you can either:

• Open the Curve Fitter app. On the Curve Fitter tab, in the Export section, click Export and
select Export to Workspace to export your fit and goodness of fit to the workspace.

• Specify the gof output argument using the fit function.

Recreate the fit specifying the gof and output arguments to get goodness-of-fit statistics and fitting
algorithm information.

[curvefit,gof,output] = fit(cdate,pop,'poly3','normalize','on')

curvefit =
 Linear model Poly3:
 curvefit(x) = p1*x^3 + p2*x^2 + p3*x + p4
 where x is normalized by mean 1890 and std 62.05
 Coefficients (with 95% confidence bounds):
 p1 = 0.921 (-0.9743, 2.816)
 p2 = 25.18 (23.57, 26.79)
 p3 = 73.86 (70.33, 77.39)
 p4 = 61.74 (59.69, 63.8)

gof = struct with fields:
 sse: 149.7687
 rsquare: 0.9988
 dfe: 17
 adjrsquare: 0.9986
 rmse: 2.9682

output = struct with fields:
 numobs: 21
 numparam: 4
 residuals: [21x1 double]
 Jacobian: [21x4 double]
 exitflag: 1
 algorithm: 'QR factorization and solve'
 iterations: 1

Plot a histogram of the residuals to look for a roughly normal distribution.

histogram(output.residuals,10)

 Evaluate a Curve Fit

7-21

Plot the Fit, Data, and Residuals

plot(curvefit,cdate,pop,'fit','residuals')
legend Location SouthWest
subplot(2,1,1)
legend Location NorthWest

7 Fit Postprocessing

7-22

Find Methods

List every method that you can use with the fit.

methods(curvefit)

Methods for class cfit:

argnames category cfit coeffnames coeffvalues confint dependnames differentiate feval fitoptions formula indepnames integrate islinear numargs numcoeffs plot predint probnames probvalues setoptions type

Use the help command to find out how to use a fit method.

help cfit/differentiate

 DIFFERENTIATE Differentiate a fit result object.
 DERIV1 = DIFFERENTIATE(FITOBJ,X) differentiates the model FITOBJ at the
 points specified by X and returns the result in DERIV1. FITOBJ is a Fit
 object generated by the FIT or CFIT function. X is a vector. DERIV1 is
 a vector with the same size as X. Mathematically speaking, DERIV1 =
 D(FITOBJ)/D(X).

 [DERIV1,DERIV2] = DIFFERENTIATE(FITOBJ, X) computes the first and
 second derivatives, DERIV1 and DERIV2 respectively, of the model
 FITOBJ.

 See also CFIT/INTEGRATE, FIT, CFIT.

 Evaluate a Curve Fit

7-23

Evaluate a Surface Fit

This example shows how to work with a surface fit.

Load Data and Fit a Polynomial Surface

load franke;
surffit = fit([x,y],z,'poly23','normalize','on')

 Linear model Poly23:
 surffit(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y
 + p12*x*y^2 + p03*y^3
 where x is normalized by mean 1982 and std 868.6
 and where y is normalized by mean 0.4972 and std 0.2897
 Coefficients (with 95% confidence bounds):
 p00 = 0.4253 (0.3928, 0.4578)
 p10 = -0.106 (-0.1322, -0.07974)
 p01 = -0.4299 (-0.4775, -0.3822)
 p20 = 0.02104 (0.001457, 0.04062)
 p11 = 0.07153 (0.05409, 0.08898)
 p02 = -0.03084 (-0.05039, -0.01129)
 p21 = 0.02091 (0.001372, 0.04044)
 p12 = -0.0321 (-0.05164, -0.01255)
 p03 = 0.1216 (0.09929, 0.1439)

The output displays the fitted model equation, the fitted coefficients, and the confidence bounds for
the fitted coefficients.

Plot the Fit, Data, Residuals, and Prediction Bounds

plot(surffit,[x,y],z)

7 Fit Postprocessing

7-24

Plot the residuals fit.

plot(surffit,[x,y],z,'Style','Residuals')

 Evaluate a Surface Fit

7-25

Plot prediction bounds on the fit.

plot(surffit,[x,y],z,'Style','predfunc')

7 Fit Postprocessing

7-26

Evaluate the Fit at a Specified Point

Evaluate the fit at a specific point by specifying a value for x and y , using this form: z =
fittedmodel(x,y).

surffit(1000,0.5)

ans = 0.5673

Evaluate the Fit Values at Many Points

xi = [500;1000;1200];
yi = [0.7;0.6;0.5];
surffit(xi,yi)

ans = 3×1

 0.3771
 0.4064
 0.5331

Get prediction bounds on those values.

[ci, zi] = predint(surffit,[xi,yi])

ci = 3×2

 Evaluate a Surface Fit

7-27

 0.0713 0.6829
 0.1058 0.7069
 0.2333 0.8330

zi = 3×1

 0.3771
 0.4064
 0.5331

Get the Model Equation

Enter the fit name to display the model equation, fitted coefficients, and confidence bounds for the
fitted coefficients.

surffit

 Linear model Poly23:
 surffit(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y
 + p12*x*y^2 + p03*y^3
 where x is normalized by mean 1982 and std 868.6
 and where y is normalized by mean 0.4972 and std 0.2897
 Coefficients (with 95% confidence bounds):
 p00 = 0.4253 (0.3928, 0.4578)
 p10 = -0.106 (-0.1322, -0.07974)
 p01 = -0.4299 (-0.4775, -0.3822)
 p20 = 0.02104 (0.001457, 0.04062)
 p11 = 0.07153 (0.05409, 0.08898)
 p02 = -0.03084 (-0.05039, -0.01129)
 p21 = 0.02091 (0.001372, 0.04044)
 p12 = -0.0321 (-0.05164, -0.01255)
 p03 = 0.1216 (0.09929, 0.1439)

To get only the model equation, use formula.

formula(surffit)

ans =
'p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y + p12*x*y^2 + p03*y^3'

Get Coefficient Names and Values

Specify a coefficient by name.

p00 = surffit.p00

p00 = 0.4253

p03 = surffit.p03

p03 = 0.1216

Get all the coefficient names. Look at the fit equation (for example, f(x,y) = p00 + p10*x...) to
see the model terms for each coefficient.

coeffnames(surffit)

ans = 9x1 cell
 {'p00'}

7 Fit Postprocessing

7-28

 {'p10'}
 {'p01'}
 {'p20'}
 {'p11'}
 {'p02'}
 {'p21'}
 {'p12'}
 {'p03'}

Get all the coefficient values.

coeffvalues(surffit)

ans = 1×9

 0.4253 -0.1060 -0.4299 0.0210 0.0715 -0.0308 0.0209 -0.0321 0.1216

Get Confidence Bounds on the Coefficients

Use confidence bounds on coefficients to help you evaluate and compare fits. The confidence bounds
on the coefficients determine their accuracy. Bounds that are far apart indicate uncertainty. If the
bounds cross zero for linear coefficients, this means you cannot be sure that these coefficients differ
from zero. If some model terms have coefficients of zero, then they are not helping with the fit.

confint(surffit)

ans = 2×9

 0.3928 -0.1322 -0.4775 0.0015 0.0541 -0.0504 0.0014 -0.0516 0.0993
 0.4578 -0.0797 -0.3822 0.0406 0.0890 -0.0113 0.0404 -0.0126 0.1439

Find Methods

List every method that you can use with the fit.

methods(surffit)

Methods for class sfit:

argnames category coeffnames coeffvalues confint dependnames differentiate feval fitoptions formula indepnames islinear numargs numcoeffs plot predint probnames probvalues quad2d setoptions sfit type

Use the help command to find out how to use a fit method.

help sfit/quad2d

 QUAD2D Numerically integrate a surface fit object.
 Q = QUAD2D(FO, A, B, C, D) approximates the integral of the surface fit
 object FO over the planar region A <= x <= B and C(x) <= y <= D(x). C and D
 may each be a scalar, a function handle or a curve fit (CFIT) object.

 [Q,ERRBND] = QUAD2D(...) also returns an approximate upper bound on the
 absolute error, ERRBND.

 [Q,ERRBND] = QUAD2D(FUN,A,B,C,D,PARAM1,VAL1,PARAM2,VAL2,...) performs
 the integration with specified values of optional parameters.

 Evaluate a Surface Fit

7-29

 See QUAD2D for details of the upper bound and the optional parameters.

 See also: QUAD2D, FIT, SFIT, CFIT.

7 Fit Postprocessing

7-30

Compare Fits Programmatically

This example shows how to fit and compare polynomials up to sixth degree using Curve Fitting
Toolbox™, fitting some census data. It also shows how to fit a single-term exponential equation and
compare this to the polynomial models.

The steps show how to:

• Load data and create fits using different library models.
• Search for the best fit by comparing graphical fit results, and by comparing numerical fit results

including the fitted coefficients and goodness of fit statistics.

Load and Plot the Data

The data for this example is the file census.mat.

load census

The workspace contains two new variables:

• cdate is a column vector containing the years 1790 to 1990 in 10-year increments.

• pop is a column vector with the U.S. population figures that correspond to the years in cdate .

whos cdate pop
plot(cdate,pop,'o')

 Name Size Bytes Class Attributes

 cdate 21x1 168 double
 pop 21x1 168 double

 Compare Fits Programmatically

7-31

Create and Plot a Quadratic

Use the fit function to fit a polynomial to data. You specify a quadratic, or second-degree polynomial,
using 'poly2'. The first output from fit is the polynomial, and the second output, gof, contains the
goodness of fit statistics you will examine in a later step.

[population2,gof] = fit(cdate,pop,'poly2');

To plot the fit, use the plot method.

plot(population2,cdate,pop);
% Move the legend to the top left corner.
legend('Location','NorthWest');

7 Fit Postprocessing

7-32

Create and Plot a Selection of Polynomials

To fit polynomials of different degrees, change the fittype, e.g., for a cubic or third-degree polynomial
use 'poly3'. The scale of the input, cdate, is quite large, so you can obtain better results by centering
and scaling the data. To do this, use the 'Normalize' option.

population3 = fit(cdate,pop,'poly3','Normalize','on');
population4 = fit(cdate,pop,'poly4','Normalize','on');
population5 = fit(cdate,pop,'poly5','Normalize','on');
population6 = fit(cdate,pop,'poly6','Normalize','on');

A simple model for population growth tells us that an exponential equation should fit this census data
well. To fit a single term exponential model, use 'exp1' as the fittype.

populationExp = fit(cdate,pop,'exp1');

Plot all the fits at once, and add a meaningful legend in the top left corner of the plot.

hold on
plot(population3,'b');
plot(population4,'g');
plot(population5,'m');
plot(population6,'b--');
plot(populationExp,'r--');
hold off
legend('cdate v pop','poly2','poly3','poly4','poly5','poly6','exp1',...
 'Location','NorthWest');

 Compare Fits Programmatically

7-33

Plot the Residuals to Evaluate the Fit

To plot residuals, specify 'residuals' as the plot type in the plot method.

plot(population2,cdate,pop,'residuals');

7 Fit Postprocessing

7-34

The fits and residuals for the polynomial equations are all similar, making it difficult to choose the
best one. If the residuals display a systematic pattern, it is a clear sign that the model fits the data
poorly.

plot(populationExp,cdate,pop,'residuals');

 Compare Fits Programmatically

7-35

The fit and residuals for the single-term exponential equation indicate it is a poor fit overall.
Therefore, it is a poor choice and you can remove the exponential fit from the candidates for best fit.

Examine Fits Beyond the Data Range

Examine the behavior of the fits up to the year 2050. The goal of fitting the census data is to
extrapolate the best fit to predict future population values. By default, the fit is plotted over the range
of the data. To plot a fit over a different range, set the x-limits of the axes before plotting the fit. For
example, to see values extrapolated from the fit, set the upper x-limit to 2050.

plot(cdate,pop,'o');
xlim([1900, 2050]);
hold on
plot(population6);
hold off

7 Fit Postprocessing

7-36

Examine the plot. The behavior of the sixth-degree polynomial fit beyond the data range makes it a
poor choice for extrapolation and you can reject this fit.

Plot Prediction Intervals

To plot prediction intervals, use 'predobs' or 'predfun' as the plot type. For example, to see the
prediction bounds for the fifth-degree polynomial for a new observation up to year 2050:

plot(cdate,pop,'o');
xlim([1900, 2050])
hold on
plot(population5,'predobs');
hold off

 Compare Fits Programmatically

7-37

Plot prediction intervals for the cubic polynomial up to year 2050.

plot(cdate,pop,'o');
xlim([1900, 2050])
hold on
plot(population3,'predobs')
hold off

7 Fit Postprocessing

7-38

Examine Goodness-of-Fit Statistics

The struct gof shows the goodness-of-fit statistics for the 'poly2' fit. When you created the 'poly2' fit
with the fit function in an earlier step, you specified the gof output argument.

gof

gof =

 struct with fields:

 sse: 159.0293
 rsquare: 0.9987
 dfe: 18
 adjrsquare: 0.9986
 rmse: 2.9724

Examine the sum of squares due to error (SSE) and the adjusted R-square statistics to help determine
the best fit. The SSE statistic is the least-squares error of the fit, with a value closer to zero indicating
a better fit. The adjusted R-square statistic is generally the best indicator of the fit quality when you
add additional coefficients to your model.

The large SSE for 'exp1' indicates it is a poor fit, which you already determined by examining the fit
and residuals. The lowest SSE value is associated with 'poly6'. However, the behavior of this fit

 Compare Fits Programmatically

7-39

beyond the data range makes it a poor choice for extrapolation, so you already rejected this fit by
examining the plots with new axis limits.

The next best SSE value is associated with the fifth-degree polynomial fit, 'poly5', suggesting it might
be the best fit. However, the SSE and adjusted R-square values for the remaining polynomial fits are
all very close to each other. Which one should you choose?

Compare the Coefficients and Confidence Bounds to Determine the Best Fit

Resolve the best fit issue by examining the coefficients and confidence bounds for the remaining fits:
the fifth-degree polynomial and the quadratic.

Examine population2 and population5 by displaying the models, the fitted coefficients, and the
confidence bounds for the fitted coefficients:

population2

population5

population2 =

 Linear model Poly2:
 population2(x) = p1*x^2 + p2*x + p3
 Coefficients (with 95% confidence bounds):
 p1 = 0.006541 (0.006124, 0.006958)
 p2 = -23.51 (-25.09, -21.93)
 p3 = 2.113e+04 (1.964e+04, 2.262e+04)

population5 =

 Linear model Poly5:
 population5(x) = p1*x^5 + p2*x^4 + p3*x^3 + p4*x^2 + p5*x + p6
 where x is normalized by mean 1890 and std 62.05
 Coefficients (with 95% confidence bounds):
 p1 = 0.5877 (-2.305, 3.48)
 p2 = 0.7047 (-1.684, 3.094)
 p3 = -0.9193 (-10.19, 8.356)
 p4 = 23.47 (17.42, 29.52)
 p5 = 74.97 (68.37, 81.57)
 p6 = 62.23 (59.51, 64.95)

You can also get the confidence intervals by using confint.

ci = confint(population5)

ci =

 -2.3046 -1.6841 -10.1943 17.4213 68.3655 59.5102
 3.4801 3.0936 8.3558 29.5199 81.5696 64.9469

The confidence bounds on the coefficients determine their accuracy. Check the fit equations (e.g.
f(x)=p1*x+p2*x...) to see the model terms for each coefficient. Note that p2 refers to the p2*x term
in 'poly2' and the p2*x^4 term in 'poly5'. Do not compare normalized coefficients directly with non-
normalized coefficients.

7 Fit Postprocessing

7-40

The bounds cross zero on the p1, p2, and p3 coefficients for the fifth-degree polynomial. This means
you cannot be sure that these coefficients differ from zero. If the higher order model terms may have
coefficients of zero, they are not helping with the fit, which suggests that this model over fits the
census data.

The fitted coefficients associated with the constant, linear, and quadratic terms are nearly identical
for each normalized polynomial equation. However, as the polynomial degree increases, the
coefficient bounds associated with the higher degree terms cross zero, which suggests over fitting.

However, the small confidence bounds do not cross zero on p1, p2, and p3 for the quadratic fit,
indicating that the fitted coefficients are known fairly accurately.

Therefore, after examining both the graphical and numerical fit results, you should select the
quadratic population2 as the best fit to extrapolate the census data.

Evaluate the Best Fit at New Query Points

Now you have selected the best fit, population2, for extrapolating this census data, evaluate the fit for
some new query points.

cdateFuture = (2000:10:2020).';
popFuture = population2(cdateFuture)

popFuture =

 274.6221
 301.8240
 330.3341

To compute 95% confidence bounds on the prediction for the population in the future, use the predint
method:

ci = predint(population2,cdateFuture,0.95,'observation')

ci =

 266.9185 282.3257
 293.5673 310.0807
 321.3979 339.2702

Plot the predicted future population, with confidence intervals, against the fit and data.

plot(cdate,pop,'o');
xlim([1900, 2040])
hold on
plot(population2)
h = errorbar(cdateFuture,popFuture,popFuture-ci(:,1),ci(:,2)-popFuture,'.');
hold off
legend('cdate v pop','poly2','prediction','Location','NorthWest')

 Compare Fits Programmatically

7-41

7 Fit Postprocessing

7-42

Evaluating Goodness of Fit

In this section...
“How to Evaluate Goodness of Fit” on page 7-43
“Goodness-of-Fit Statistics” on page 7-44

How to Evaluate Goodness of Fit
After fitting data with one or more models, you should evaluate the goodness of fit. A visual
examination of the fitted curve displayed in the Curve Fitter app should be your first step. Beyond
that, the toolbox provides these methods to assess goodness of fit for both linear and nonlinear
parametric fits:

• “Goodness-of-Fit Statistics” on page 7-44
• “Residual Analysis” on page 7-47
• “Confidence and Prediction Bounds” on page 7-51

As is common in statistical literature, the term goodness of fit is used here in several senses: A “good
fit” might be a model

• that your data could reasonably have come from, given the assumptions of least-squares fitting
• in which the model coefficients can be estimated with little uncertainty
• that explains a high proportion of the variability in your data, and is able to predict new

observations with high certainty

A particular application might dictate still other aspects of model fitting that are important to
achieving a good fit, such as a simple model that is easy to interpret. The methods described here can
help you determine goodness of fit in all these senses.

These methods group into two types: graphical and numerical. Plotting residuals and prediction
bounds are graphical methods that aid visual interpretation, while computing goodness-of-fit
statistics and coefficient confidence bounds yield numerical measures that aid statistical reasoning.

Generally speaking, graphical measures are more beneficial than numerical measures because they
allow you to view the entire data set at once, and they can easily display a wide range of relationships
between the model and the data. The numerical measures are more narrowly focused on a particular
aspect of the data and often try to compress that information into a single number. In practice,
depending on your data and analysis requirements, you might need to use both types to determine
the best fit.

Note that it is possible that none of your fits can be considered suitable for your data, based on these
methods. In this case, it might be that you need to select a different model. It is also possible that all
the goodness-of-fit measures indicate that a particular fit is suitable. However, if your goal is to
extract fitted coefficients that have physical meaning, but your model does not reflect the physics of
the data, the resulting coefficients are useless. In this case, understanding what your data represents
and how it was measured is just as important as evaluating the goodness of fit.

 Evaluating Goodness of Fit

7-43

Goodness-of-Fit Statistics
After using graphical methods to evaluate the goodness of fit, you should examine the goodness-of-fit
statistics. Curve Fitting Toolbox software supports these goodness-of-fit statistics for parametric
models:

• The sum of squares due to error (SSE)
• R-square
• Adjusted R-square
• Root mean squared error (RMSE)

For the current fit, these statistics are displayed in the Results pane in the Curve Fitter app. For all
fits in the current curve-fitting session, you can compare the goodness-of-fit statistics in the Table Of
Fits pane.

To examine goodness-of-fit statistics at the command line, either:

• In the Curve Fitter app, export your fit and goodness of fit to the workspace. On the Curve Fitter
tab, in the Export section, click Export and select Export to Workspace.

• Specify the gof output argument with the fit function.

Sum of Squares Due to Error

This statistic measures the total deviation of the response values from the fit to the response values.
It is also called the summed square of residuals and is usually labeled as SSE.

SSE = ∑
i = 1

n
wi yi− y i

2

A value closer to 0 indicates that the model has a smaller random error component, and that the fit
will be more useful for prediction.

R-Square

This statistic measures how successful the fit is in explaining the variation of the data. Put another
way, R-square is the square of the correlation between the response values and the predicted
response values. It is also called the square of the multiple correlation coefficient and the coefficient
of multiple determination.

R-square is defined as the ratio of the sum of squares of the regression (SSR) and the total sum of
squares (SST). SSR is defined as

SSR = ∑
i = 1

n
wi y i− y 2

SST is also called the sum of squares about the mean, and is defined as

SST = ∑
i = 1

n
wi yi− y 2

where SST = SSR + SSE. Given these definitions, R-square is expressed as

7 Fit Postprocessing

7-44

R‐square = SSR
SST = 1− SSE

SST

R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a greater
proportion of variance is accounted for by the model. For example, an R-square value of 0.8234
means that the fit explains 82.34% of the total variation in the data about the average.

If you increase the number of fitted coefficients in your model, R-square will increase although the fit
may not improve in a practical sense. To avoid this situation, you should use the degrees of freedom
adjusted R-square statistic described below.

Note that it is possible to get a negative R-square for equations that do not contain a constant term.
Because R-square is defined as the proportion of variance explained by the fit, if the fit is actually
worse than just fitting a horizontal line then R-square is negative. In this case, R-square cannot be
interpreted as the square of a correlation. Such situations indicate that a constant term should be
added to the model.

Degrees of Freedom Adjusted R-Square

This statistic uses the R-square statistic defined above, and adjusts it based on the residual degrees of
freedom. The residual degrees of freedom is defined as the number of response values n minus the
number of fitted coefficients m estimated from the response values.

v = n – m

v indicates the number of independent pieces of information involving the n data points that are
required to calculate the sum of squares. Note that if parameters are bounded and one or more of the
estimates are at their bounds, then those estimates are regarded as fixed. The degrees of freedom is
increased by the number of such parameters.

The adjusted R-square statistic is generally the best indicator of the fit quality when you compare two
models that are nested — that is, a series of models each of which adds additional coefficients to the
previous model.

adjusted R‐square = 1− SSE(n− 1)
SST(v)

The adjusted R-square statistic can take on any value less than or equal to 1, with a value closer to 1
indicating a better fit. Negative values can occur when the model contains terms that do not help to
predict the response.

Root Mean Squared Error

This statistic is also known as the fit standard error and the standard error of the regression. It is an
estimate of the standard deviation of the random component in the data, and is defined as

RMSE = s = MSE

where MSE is the mean square error or the residual mean square

MSE = SSE
v

Just as with SSE, an MSE value closer to 0 indicates a fit that is more useful for prediction.

 Evaluating Goodness of Fit

7-45

See Also
fit

Related Examples
• “Generate Code and Export Fits to the Workspace” on page 7-13
• “Evaluate a Curve Fit” on page 7-16
• “Evaluate a Surface Fit” on page 7-24

7 Fit Postprocessing

7-46

Residual Analysis
Plotting and Analysing Residuals
The residuals from a fitted model are defined as the differences between the response data and the fit
to the response data at each predictor value.

residual = data – fit

You can display the residuals in the Curve Fitter app by clicking Residuals Plot in the Visualization
section of the Curve Fitter tab.

Mathematically, the residual for a specific predictor value is the difference between the response
value y and the predicted response value ŷ.

r = y – ŷ

Assuming the model you fit to the data is correct, the residuals approximate the random errors.
Therefore, if the residuals appear to behave randomly, it suggests that the model fits the data well.
However, if the residuals display a systematic pattern, it is a clear sign that the model fits the data
poorly. Always bear in mind that many results of model fitting, such as confidence bounds, will be
invalid should the model be grossly inappropriate for the data.

A graphical display of the residuals for a first-degree polynomial fit is shown below. The top plot
shows that the residuals are calculated as the vertical distance from the data point to the fitted curve.
The bottom plot displays the residuals relative to the fit, which is the zero line.

The residuals appear randomly scattered around zero indicating that the model describes the data
well.

A graphical display of the residuals for a second-degree polynomial fit is shown below. The model
includes only the quadratic term, and does not include a linear or constant term.

 Residual Analysis

7-47

The residuals are systematically positive for much of the data range indicating that this model is a
poor fit for the data.

Example: Residual Analysis
This example fits several polynomial models to generated data and evaluates how well those models
fit the data and how precisely they can predict. The data is generated from a cubic curve, and there is
a large gap in the range of the x variable where no data exist.

x = [1:0.1:3 9:0.1:10]';
c = [2.5 -0.5 1.3 -0.1];
y = c(1) + c(2)*x + c(3)*x.^2 + c(4)*x.^3 + (rand(size(x))-0.5);

Fit the data in the Curve Fitter app using a cubic polynomial and a fifth-degree polynomial. The data,
fits, and residuals are shown below. You can display residuals in the Curve Fitter app by clicking
Residuals Plot in the Visualization section of the Curve Fitter tab.

7 Fit Postprocessing

7-48

Both models appear to fit the data well, and the residuals appear to be randomly distributed around
zero. Therefore, a graphical evaluation of the fits does not reveal any obvious differences between the
two equations.

Look at the numerical fit results in the Results pane and compare the confidence bounds for the
coefficients.

The results show that the cubic fit coefficients are accurately known (bounds are small), while the
quintic fit coefficients are not accurately known. As expected, the fit results for poly3 are reasonable
because the generated data follows a cubic curve. The 95% confidence bounds on the fitted
coefficients indicate that they are acceptably precise. However, the 95% confidence bounds for poly5
indicate that the fitted coefficients are not known precisely.

The goodness-of-fit statistics are shown in the Table Of Fits pane. By default, the adjusted R-square
and RMSE statistics are displayed in the table. The statistics do not reveal a substantial difference
between the two equations. To choose statistics to display or hide, right-click the column headers.

The 95% nonsimultaneous prediction bounds for new observations are shown below. To display
prediction bounds in the Curve Fitter app, select 95% from the Prediction Bounds list in the
Visualization section of the Curve Fitter tab.

 Residual Analysis

7-49

The prediction bounds for poly3 indicate that new observations can be predicted with a small
uncertainty throughout the entire data range. This is not the case for poly5. It has wider prediction
bounds in the area where no data exist, apparently because the data does not contain enough
information to estimate the higher degree polynomial terms accurately. In other words, a fifth-degree
polynomial overfits the data.

The 95% prediction bounds for the fitted function using poly5 are shown below. As you can see, the
uncertainty in predicting the function is large in the center of the data. Therefore, you would
conclude that more data must be collected before you can make precise predictions using a fifth-
degree polynomial.

In conclusion, you should examine all available goodness-of-fit measures before deciding on the fit
that is best for your purposes. A graphical examination of the fit and residuals should always be your
initial approach. However, some fit characteristics are revealed only through numerical fit results,
statistics, and prediction bounds.

7 Fit Postprocessing

7-50

Confidence and Prediction Bounds

In this section...
“About Confidence and Prediction Bounds” on page 7-51
“Confidence Bounds on Coefficients” on page 7-51
“Prediction Bounds on Fits” on page 7-52
“Compute Prediction Intervals” on page 7-54

About Confidence and Prediction Bounds
Curve Fitting Toolbox software lets you calculate confidence bounds for the fitted coefficients, and
prediction bounds for new observations or for the fitted function. Additionally, for prediction bounds,
you can calculate simultaneous bounds, which take into account all predictor values, or you can
calculate nonsimultaneous bounds, which take into account only individual predictor values. The
coefficient confidence bounds are presented numerically, while the prediction bounds are displayed
graphically and are also available numerically.

The available confidence and prediction bounds are summarized below.

Types of Confidence and Prediction Bounds

Interval Type Description
Fitted coefficients Confidence bounds for the fitted coefficients
New observation Prediction bounds for a new observation (response value)
New function Prediction bounds for a new function value

Note Prediction bounds are also often described as confidence bounds because you are calculating a
confidence interval for a predicted response.

Confidence and prediction bounds define the lower and upper values of the associated interval, and
define the width of the interval. The width of the interval indicates how uncertain you are about the
fitted coefficients, the predicted observation, or the predicted fit. For example, a very wide interval
for the fitted coefficients can indicate that you should use more data when fitting before you can say
anything very definite about the coefficients.

The bounds are defined with a level of certainty that you specify. The level of certainty is often 95%,
but it can be any value such as 90%, 99%, 99.9%, and so on. For example, you might want to take a
5% chance of being incorrect about predicting a new observation. Therefore, you would calculate a
95% prediction interval. This interval indicates that you have a 95% chance that the new observation
is actually contained within the lower and upper prediction bounds.

Confidence Bounds on Coefficients
The confidence bounds for fitted coefficients are given by

C = b ± t S

 Confidence and Prediction Bounds

7-51

where b are the coefficients produced by the fit, t depends on the confidence level, and is computed
using the inverse of Student's t cumulative distribution function, and S is a vector of the diagonal
elements from the estimated covariance matrix of the coefficient estimates, (XTX)–1s2. In a linear fit, X
is the design matrix, while for a nonlinear fit X is the Jacobian of the fitted values with respect to the
coefficients. XT is the transpose of X, and s2 is the mean squared error.

The confidence bounds are displayed in the Results pane in the Curve Fitter app using the following
format.

p1 = 1.275 (1.113, 1.437)

The fitted value for the coefficient p1 is 1.275, the lower bound is 1.113, the upper bound is 1.437,
and the interval width is 0.324. By default, the confidence level for the bounds is 95%.

You can calculate confidence intervals at the command line with the confint function.

Prediction Bounds on Fits
As mentioned previously, you can calculate prediction bounds for the fitted curve. The prediction is
based on an existing fit to the data. Additionally, the bounds can be simultaneous and measure the
confidence for all predictor values, or they can be nonsimultaneous and measure the confidence only
for a single predetermined predictor value. If you are predicting a new observation, nonsimultaneous
bounds measure the confidence that the new observation lies within the interval given a single
predictor value. Simultaneous bounds measure the confidence that a new observation lies within the
interval regardless of the predictor value.

Bound Type Observation Functional
Simultaneous y ± f s2 + xSxT y ± f xSxT

Nonsimultaneous y ± t s2 + xSxT y ± t xSxT

Where:

• s2 is the mean squared error
• t depends on the confidence level, and is computed using the inverse of Student's t cumulative

distribution function
• f depends on the confidence level, and is computed using the inverse of the F cumulative

distribution function.
• S is the covariance matrix of the coefficient estimates, (XTX)–1s2.
• x is a row vector of the design matrix or Jacobian evaluated at a specified predictor value.

You can graphically display prediction bounds using the Curve Fitter app. In the Curve Fitter app, you
can display nonsimultaneous prediction bounds for new observations. On the Curve Fitter tab, in the
Visualization section, select a level of certainty from the Prediction Bounds list. You can change
this level to any value by selecting Custom from the list.

You can display numerical prediction bounds of any type at the command line with the predint
function.

To understand the quantities associated with each type of prediction interval, recall that the data, fit,
and residuals are related through the formula

7 Fit Postprocessing

7-52

data = fit + residuals

where the fit and residuals terms are estimates of terms in the formula

data = model + random error

Suppose you plan to take a new observation at the predictor value xn+1. Call the new observation yn
+1(xn+1) and the associated error εn+1. Then

yn+1(xn+1) = f(xn+1) + εn+1

where f(xn+1) is the true but unknown function you want to estimate at xn+1. The likely values for the
new observation or for the estimated function are provided by the nonsimultaneous prediction
bounds.

If instead you want the likely value of the new observation to be associated with any predictor value,
the previous equation becomes

yn+1(x) = f(x) + ε

The likely values for this new observation or for the estimated function are provided by the
simultaneous prediction bounds.

The types of prediction bounds are summarized below.

Types of Prediction Bounds

Type of Bound Simultaneous or
Nonsimultaneous

Associated Equation

Observation Nonsimultaneous yn+1(xn+1)
Simultaneous yn+1(x), for all x

Function Nonsimultaneous f(xn+1)
Simultaneous f(x), for all x

The nonsimultaneous and simultaneous prediction bounds for a new observation and the fitted
function are shown below. Each graph contains three curves: the fit, the lower confidence bounds,
and the upper confidence bounds. The fit is a single-term exponential to generated data and the
bounds reflect a 95% confidence level. Note that the intervals associated with a new observation are
wider than the fitted function intervals because of the additional uncertainty in predicting a new
response value (the curve plus random errors).

 Confidence and Prediction Bounds

7-53

Compute Prediction Intervals

Compute and plot observation and functional prediction intervals for a fit to noisy data.

Generate noisy data with an exponential trend.

x = (0:0.2:5)';
y = 2*exp(-0.2*x) + 0.5*randn(size(x));

Fit a curve to the data using a single-term exponential.

fitresult = fit(x,y,'exp1');

Compute 95% observation and functional prediction intervals, both simultaneous and
nonsimultaneous. Nonsimultaneous bounds are for individual elements of x; simultaneous bounds are
for all elements of x.

p11 = predint(fitresult,x,0.95,'observation','off');
p12 = predint(fitresult,x,0.95,'observation','on');
p21 = predint(fitresult,x,0.95,'functional','off');
p22 = predint(fitresult,x,0.95,'functional','on');

Plot the data, fit, and prediction intervals. Observation bounds are wider than functional bounds
because they measure the uncertainty of predicting the fitted curve plus the random variation in the
new observation.

subplot(2,2,1)
plot(fitresult,x,y), hold on, plot(x,p11,'m--'), xlim([0 5]), ylim([-1 5])
title('Nonsimultaneous Observation Bounds','FontSize',9)
legend off

subplot(2,2,2)
plot(fitresult,x,y), hold on, plot(x,p12,'m--'), xlim([0 5]), ylim([-1 5])

7 Fit Postprocessing

7-54

title('Simultaneous Observation Bounds','FontSize',9)
legend off

subplot(2,2,3)
plot(fitresult,x,y), hold on, plot(x,p21,'m--'), xlim([0 5]), ylim([-1 5])
title('Nonsimultaneous Functional Bounds','FontSize',9)
legend off

subplot(2,2,4)
plot(fitresult,x,y), hold on, plot(x,p22,'m--'), xlim([0 5]), ylim([-1 5])
title('Simultaneous Functional Bounds','FontSize',9)
legend({'Data','Fitted curve', 'Prediction intervals'},...
 'FontSize',8,'Location','northeast')

 Confidence and Prediction Bounds

7-55

Differentiating and Integrating a Fit

This example shows how to find the first and second derivatives of a fit, and the integral of the fit, at
the predictor values.

Create a baseline sinusoidal signal:

xdata = (0:.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal:

noise = 2*y0.*randn(size(y0)); % Response-dependent noise
ydata = y0 + noise;

Fit the noisy data with a custom sinusoidal model:

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Find the derivatives of the fit at the predictors:

[d1,d2] = differentiate(fit1,xdata);

Plot the data, the fit, and the derivatives:

subplot(3,1,1)
plot(fit1,xdata,ydata) % cfit plot method
subplot(3,1,2)
plot(xdata,d1,'m') % double plot method
grid on
legend('1st derivative')
subplot(3,1,3)
plot(xdata,d2,'c') % double plot method
grid on
legend('2nd derivative')

7 Fit Postprocessing

7-56

Note that derivatives can also be computed and plotted directly with the cfit plot method, as follows.
The plot method, however, does not return data on the derivatives.

plot(fit1,xdata,ydata,{'fit','deriv1','deriv2'})

 Differentiating and Integrating a Fit

7-57

Find the integral of the fit at the predictors:

int = integrate(fit1,xdata,0);

Plot the data, the fit, and the integral:

subplot(2,1,1)
plot(fit1,xdata,ydata) % cfit plot method
subplot(2,1,2)
plot(xdata,int,'m') % double plot method
grid on
legend('integral')

7 Fit Postprocessing

7-58

Note that integrals can also be computed and plotted directly with the cfit plot method, as follows.
The plot method, however, does not return data on the integral.

plot(fit1,xdata,ydata,{'fit','integral'})

 Differentiating and Integrating a Fit

7-59

7 Fit Postprocessing

7-60

Spline Fitting

61

About Splines

• “Introducing Spline Fitting” on page 8-2
• “Curve Fitting Toolbox Splines and MATLAB Splines” on page 8-4

8

Introducing Spline Fitting
In this section...
“Spline Overview” on page 8-2
“Interactive Spline Fitting” on page 8-2
“Programmatic Spline Fitting” on page 8-3

Spline Overview
The Curve Fitting Toolbox spline functions are a collection of tools for creating, viewing, and
analyzing spline approximations of data. Splines are smooth piecewise polynomials that you can use
to represent functions over large intervals, where it would be impractical to use a single
approximating polynomial.

The spline functionality includes a tool that provides easy access to functions for creating, visualizing,
and manipulating splines. The toolbox also contains functions that enable you to evaluate, plot,
combine, differentiate, and integrate splines. Because all toolbox functions are implemented in the
open MATLAB language, you can inspect the algorithms, modify the source code, and create your
own custom functions.

Key spline features:

• Tools that let you create, view, and manipulate splines and manage and compare spline
approximations

• Functions for advanced spline operations, including differentiation, integration, break/knot
manipulation, and optimal knot placement

• Support for piecewise polynomial form (ppform) and basis form (B-form) splines
• Support for tensor-product splines and rational splines (including NURBS)

In Curve Fitting Toolbox you can fit splines interactively or programmatically.

Interactive Spline Fitting
Use the Curve Fitter app or the Spline Tool to interactively create spline fits.

Open the Curve Fitter app by entering curveFitter at the MATLAB command line. Alternatively, on
the Apps tab, in the Math, Statistics and Optimization group, click Curve Fitter. The Curve Fitter
app supports the same spline fitting options as the fit function.

Open the Spline Tool by entering splinetool at the command line. The Spline Tool supports all
spline functions. Use the tool to do the following:

• Vary spline parameters and tolerances.
• View and modify data, breaks, knots, and weights.
• View the error of the spline, or the spline's first or second derivative.
• Observe the toolbox commands that generated your spline.
• Create and import data, including built-in instructive data sets, and save splines to the workspace.

For more information, see splinetool.

8 About Splines

8-2

Programmatic Spline Fitting
Use the fit function to do the following:

• Fit cubic spline interpolants to curves or surfaces.
• Fit smoothing splines and shape-preserving cubic spline interpolants only to curves.
• Fit thin-plate splines only to surfaces.

Curve Fitting Toolbox also provides specific splines functions that allow more control and flexibility
when you fit splines. For example, use the csapi function, instead of fit with fitType set to
"cubicinterp", if you want to do one of the following:

• Combine the results with other splines, for example, by addition.
• Create vector-valued splines. You can use csapi with scalars, vectors, matrices, and ND-arrays.

The fit function supports only scalar-valued splines.
• Create other types of splines such as ppform, B-form, tensor-product, rational, and stform thin-

plate splines.
• Create splines without data.
• Specify breaks, optimize knot placement, and use specialized functions for spline manipulation

such as differentiation and integration.

For more information on how to create splines including B-form, tensor-product, NURBs, and other
rational splines, see “Spline Construction”.

See Also
Apps
Curve Fitter

Functions
splinetool | fit | csapi

 Introducing Spline Fitting

8-3

Curve Fitting Toolbox Splines and MATLAB Splines
In this section...
“Curve Fitting Toolbox Splines” on page 8-4
“Splines” on page 8-5
“MATLAB Splines” on page 8-5
“Expected Background” on page 8-6
“Vector Data Type Support” on page 8-6
“Spline Function Naming Conventions” on page 8-6
“Arguments for Curve Fitting Toolbox Spline Functions” on page 8-7
“Acknowledgments” on page 8-7

Curve Fitting Toolbox Splines
Curve Fitting Toolbox spline functions contain versions of the essential MATLAB programs of the B-
spline package (extended to handle also vector-valued splines) as described in A Practical Guide to
Splines, (Applied Math. Sciences Vol. 27, Springer Verlag, New York (1978), xxiv + 392p; revised
edition (2001), xviii+346p), hereafter referred to as PGS. The toolbox makes it easy to create and
work with piecewise-polynomial functions.

The typical use envisioned for this toolbox involves the construction and subsequent use of a
piecewise-polynomial approximation. This construction would involve data fitting, but there is a wide
range of possible data that could be fit. In the simplest situation, one is given points (ti,yi) and is
looking for a piecewise-polynomial function f that satisfies f(ti) = yi, all i, more or less. An exact fit
would involve interpolation, an approximate fit might involve least-squares approximation or the
smoothing spline. But the function to be approximated may also be described in more implicit ways,
for example as the solution of a differential or integral equation. In such a case, the data would be of
the form (Af)(ti), with A some differential or integral operator. On the other hand, one might want to
construct a spline curve whose exact location is less important than is its overall shape. Finally, in all
of this, one might be looking for functions of more than one variable, such as tensor product splines.

Care has been taken to make this work as painless and intuitive as possible. In particular, the user
need not worry about just how splines are constructed or stored for later use, nor need the casual
user worry about such items as “breaks” or “knots” or “coefficients”. It is enough to know that each
function constructed is just another variable that is freely usable as input (where appropriate) to
many of the commands, including all commands beginning with fn, which stands for function. At
times, it may be also useful to know that, internal to the toolbox, splines are stored in different forms,
with the command fn2fm available to convert between forms.

At present, the toolbox supports two major forms for the representation of piecewise-polynomial
functions, because each has been found to be superior to the other in certain common situations. The
B-form is particularly useful during the construction of a spline, while the ppform is more efficient
when the piecewise-polynomial function is to be evaluated extensively. These two forms are almost
exactly the B-representation and the pp representation used in A Practical Guide to Splines.

But, over the years, the Curve Fitting Toolbox spline functions have gone beyond the programs in A
Practical Guide to Splines. The toolbox now supports the `scattered translates' form, or stform, in
order to handle the construction and use of bivariate thin-plate splines, and also two ways to
represent rational splines, the rBform and the rpform, in order to handle NURBS.

8 About Splines

8-4

Splines can be very effective for data fitting because the linear systems to be solved for this are
banded, hence the work needed for their solution, done properly, grows only linearly with the number
of data points. In particular, the MATLAB sparse matrix facilities are used in the Curve Fitting
Toolbox spline functions when that is more efficient than the toolbox's own equation solver, slvblk,
which relies on the fact that some of the linear systems here are even almost block diagonal.

All polynomial spline construction commands are equipped to produce bivariate (or even
multivariate) piecewise-polynomial functions as tensor products of the univariate functions used here,
and the various fn... commands also work for these multivariate functions.

There are various examples, all accessible through the Help browser. You are strongly urged to have
a look at some of them, or at the splinetool, to help you work with splines.

Splines
Consider the set

S: = Πξ, k
μ

of all (scalar-valued) piecewise-polynomials of order k with breaks ξ1 < ... < ξl + 1 that, for i = 2...l,
may have a jump across ξi in its μith derivative but have no jump there in any lower order derivative.
This set is a linear space, in the sense that any scalar multiple of a function in S is again in S, as is the
sum of any two functions in S.

Accordingly, S contains a basis (in fact, infinitely many bases), that is, a sequence f1,...,fn so that every
f in S can be written uniquely in the form

f (x) = ∑
j = 1

n
f j(x)a j,

for suitable coefficients aj. The number n appearing here is the dimension of the linear space S. The
coefficients aj are often referred to as the coordinates of f with respect to this basis.

In particular, according to the Curry-Schoenberg Theorem, our space S has a basis consisting of B-
splines, namely the sequence of all B-splines of the form B · t j, ..., t j + k , j = 1...n, with the knot
sequence t obtained from the break sequence ξ and the sequence µ by the following conditions:

• Have both ξ1 and ξl + 1 occur in t exactly k times
• For each i = 2:l, have ξi occur in t exactly k – µi times
• Make sure the sequence is nondecreasing and only contains elements from ξ

Note the correspondence between the multiplicity of a knot and the smoothness of the spline across
that knot. In particular, at a simple knot, that is a knot that appears exactly once in the knot
sequence, only the (k – 1)st derivative may be discontinuous.

MATLAB Splines
The MATLAB technical computing environment provides spline approximation via the command
spline. If called in the form cs = spline(x,y), it returns the ppform of the cubic spline with
break sequence x that takes the value y(i) at x(i), all i, and satisfies the not-a-knot end condition.
In other words, the command cs = spline(x,y) gives the same result as the command cs =

 Curve Fitting Toolbox Splines and MATLAB Splines

8-5

csapi(x,y) available in the Curve Fitting Toolbox spline functions. But only the latter also works
when x,y describe multivariate gridded data. In MATLAB, cubic spline interpolation to multivariate
gridded data is provided by the command interpn(x1,...,xd,v,y1,...,yd,'spline') which
returns values of the interpolating tensor product cubic spline at the grid specified by y1,...,yd.

Further, any of the Curve Fitting Toolbox spline fn... commands can be applied to the output of the
MATLAB spline(x,y) command, with simple versions of the Curve Fitting Toolbox spline
commands fnval, ppmak, fnbrk available directly in MATLAB, as the commands ppval, mkpp,
unmkpp, respectively.

Expected Background
The Curve Fitting Toolbox spline functions started out as an extension of the MATLAB environment of
interest to experts in spline approximation, to aid them in the construction and testing of new
methods of spline approximation. Such people will have mastered the material in A Practical Guide to
Splines.

However, the basic commands for constructing and using spline approximations are set up to be
usable with no more knowledge than it takes to understand what it means to, say, construct an
interpolant or a least squares approximant to some data, or what it means to differentiate or
integrate a function.

With that in mind, there are sections, like “Cubic Spline Interpolation” on page 9-2, that are meant
even for the novice, while sections devoted to a detailed example, like the one on constructing a
Chebyshev spline or on constructing and using tensor products, are meant for users interested in
developing their own spline commands.

Vector Data Type Support
The Curve Fitting Toolbox spline functions can handle vector-valued splines, i.e., splines whose values
lie in Rd. Since MATLAB started out with just one variable type, that of a matrix, there is even now
some uncertainty about how to deal with vectors, i.e., lists of numbers. MATLAB sometimes stores
such a list in a matrix with just one row, and other times in a matrix with just one column. In the first
instance, such a 1-row matrix is called a row-vector; in the second instance, such a 1-column matrix is
called a column-vector. Either way, these are merely different ways for storing vectors, not different
kinds of vectors.

In this toolbox, vectors, i.e., lists of numbers, may also end up stored in a 1-row matrix or in a 1-
column matrix, but with the following agreements.

A point in Rd, i.e., a d-vector, is always stored as a column vector. In particular, if you want to supply
an n-list of d-vectors to one of the commands, you are expected to provide that list as the n columns
of a matrix of size [d,n].

While other lists of numbers (e.g., a knot sequence or a break sequence) may be stored internally as
row vectors, you may supply such lists as you please, as a row vector or a column vector.

Spline Function Naming Conventions
Most of the spline commands in this toolbox have names that follow one of the following patterns:

cs... commands construct cubic splines (in ppform)

8 About Splines

8-6

sp... commands construct splines in B-form

fn... commands operate on spline functions

..2... commands convert something

..api commands construct an approximation by interpolation

..aps commands construct an approximation by smoothing

..ap2 commands construct a least-squares approximation

...knt commands construct (part of) a particular knot sequence

...dem commands are examples.

Arguments for Curve Fitting Toolbox Spline Functions
For ease of use, most Curve Fitting Toolbox spline functions have default arguments. In the reference
entry under Syntax, we usually first list the function with all necessary input arguments and then with
all possible input arguments. When there is more than one optional argument, then, sometimes, but
not always, their exact order is immaterial. When their order does matter, you have to specify every
optional argument preceding the one(s) you are interested in. In this situation, you can specify the
default value for an optional argument by using [] (the empty matrix) as the input for it. The
description in the reference page tells you the default value for each optional input argument.

As in MATLAB, only the output arguments explicitly specified are returned to the user.

Acknowledgments
MathWorks® would like to acknowledge the contributions of Carl de Boor to the Curve Fitting
Toolbox spline functions. Professor de Boor authored the Spline Toolbox™ from its first release until
Version 3.3.4 (2008).

Professor de Boor received the John von Neumann Prize in 1996 and the National Medal of Science in
2003. He is a member of both the American Academy of Arts and Sciences and the National Academy
of Sciences. He is the author of A Practical Guide to Splines (Springer, 2001).

Some of the spline function naming conventions are the result of a discussion with Jörg Peters, then a
graduate student in Computer Sciences at the University of Wisconsin-Madison.

 Curve Fitting Toolbox Splines and MATLAB Splines

8-7

Simple Spline Examples

• “Cubic Spline Interpolation” on page 9-2
• “Vector-Valued Functions” on page 9-8
• “Fitting Values at N-D Grid with Tensor-Product Splines” on page 9-10
• “Fitting Values at Scattered 2-D Sites with Thin-Plate Smoothing Splines” on page 9-12
• “Postprocessing Splines” on page 9-13

9

Cubic Spline Interpolation
In this section...
“Cubic Spline Interpolant of Smooth Data” on page 9-2
“Periodic Data” on page 9-3
“Other End Conditions” on page 9-4
“General Spline Interpolation” on page 9-4
“Knot Choices” on page 9-5
“Smoothing” on page 9-5
“Least Squares” on page 9-7

Cubic Spline Interpolant of Smooth Data
Suppose you want to interpolate some smooth data, e.g., to

rng(6), x = (4*pi)*[0 1 rand(1,15)]; y = sin(x);

You can use the cubic spline interpolant obtained by

cs = csapi(x,y);

and plot the spline, along with the data, with the following code:

fnplt(cs);
hold on
plot(x,y,'o')
legend('cubic spline','data')
hold off

This produces a figure like the following.

9 Simple Spline Examples

9-2

Cubic Spline Interpolant of Smooth Data

This is, more precisely, the cubic spline interpolant with the not-a-knot end conditions, meaning that
it is the unique piecewise cubic polynomial with two continuous derivatives with breaks at all interior
data sites except for the leftmost and the rightmost one. It is the same interpolant as produced by the
MATLAB spline command, spline(x,y).

Periodic Data
The sine function is 2π-periodic. To check how well your interpolant does on that score, compute, e.g.,
the difference in the value of its first derivative at the two endpoints,

diff(fnval(fnder(cs),[0 4*pi]))
ans = -.0100

which is not so good. If you prefer to get an interpolant whose first and second derivatives at the two
endpoints, 0 and 4*pi, match, use instead the command csape which permits specification of many
different kinds of end conditions, including periodic end conditions. So, use instead

pcs = csape(x,y,'periodic');

for which you get

diff(fnval(fnder(pcs),[0 4*pi]))

Output is ans = 0 as the difference of end slopes. Even the difference in end second derivatives is
small:

diff(fnval(fnder(pcs,2),[0 4*pi]))

Output is ans = -4.6074e-015.

 Cubic Spline Interpolation

9-3

Other End Conditions
Other end conditions can be handled as well. For example,

cs = csape(x,[3,y,-4],[1 2]);

provides the cubic spline interpolant with breaks at the and with its slope at the leftmost data site
equal to 3, and its second derivative at the rightmost data site equal to -4.

General Spline Interpolation
If you want to interpolate at sites other than the breaks and/or by splines other than cubic splines
with simple knots, then you use the spapi command. In its simplest form, you would say sp =
spapi(k,x,y); in which the first argument, k, specifies the order of the interpolating spline; this is
the number of coefficients in each polynomial piece, i.e., 1 more than the nominal degree of its
polynomial pieces. For example, the next figure shows a linear, a quadratic, and a quartic spline
interpolant to your data, as obtained by the statements

sp2 = spapi(2,x,y); fnplt(sp2,2), hold on
sp3 = spapi(3,x,y); fnplt(sp3,2,'k--'),
sp5 = spapi(5,x,y); fnplt(sp5,2,'r-.'), plot(x,y,'o')
legend('linear','quadratic','quartic','data'), hold off

Spline Interpolants of Various Orders of Smooth Data

Even the cubic spline interpolant obtained from spapi is different from the one provided by csapi
and spline. To emphasize their difference, compute and plot their second derivatives, as follows:

fnplt(fnder(spapi(4,x,y),2)), hold on,
fnplt(fnder(csapi(x,y),2),2,'k--'),plot(x,zeros(size(x)),'o')
legend('from spapi','from csapi','data sites'), hold off

9 Simple Spline Examples

9-4

This gives the following graph:

Second Derivative of Two Cubic Spline Interpolants of the Same Smooth Data

Since the second derivative of a cubic spline is a broken line, with vertices at the breaks of the spline,
you can see clearly that csapi places breaks at the data sites, while spapi does not.

Knot Choices
It is, in fact, possible to specify explicitly just where the spline interpolant should have its breaks,
using the command sp = spapi(knots,x,y); in which the sequence knots supplies, in a certain
way, the breaks to be used. For example, recalling that you had chosen y to be sin(x), the command

ch = spapi(augknt(x,4,2),[x x],[y cos(x)]);

provides a cubic Hermite interpolant to the sine function, namely the piecewise cubic function, with
breaks at all the x(i)'s, that matches the sine function in value and slope at all the x(i)'s. This
makes the interpolant continuous with continuous first derivative but, in general, it has jumps across
the breaks in its second derivative. Just how does this command know which part of the data value
array [y cos(x)] supplies the values and which the slopes? Notice that the data site array here is
given as [x x], i.e., each data site appears twice. Also notice that y(i) is associated with the first
occurrence of x(i), and cos(x(i)) is associated with the second occurrence of x(i). The data
value associated with the first appearance of a data site is taken to be a function value; the data value
associated with the second appearance is taken to be a slope. If there were a third appearance of that
data site, the corresponding data value would be taken as the second derivative value to be matched
at that site. See “Constructing and Working with B-form Splines” on page 10-17 for a discussion of
the command augknt used here to generate the appropriate "knot sequence".

Smoothing
What if the data are noisy? For example, suppose that the given values are

 Cubic Spline Interpolation

9-5

noisy = y + .3*(rand(size(x))-.5);

Then you might prefer to approximate instead. For example, you might try the cubic smoothing
spline, obtained by the command

scs = csaps(x,noisy);

and plotted by

fnplt(scs,2), hold on, plot(x,noisy,'o'),
legend('smoothing spline','noisy data'), hold off

This produces a figure like this:

Cubic Smoothing Spline of Noisy Data

If you don't like the level of smoothing done by csaps(x,y), you can change it by specifying the
smoothing parameter, p, as an optional third argument. Choose this number anywhere between 0 and
1. As p changes from 0 to 1, the smoothing spline changes, correspondingly, from one extreme, the
least squares straight-line approximation to the data, to the other extreme, the "natural" cubic spline
interpolant to the data. Since csaps returns the smoothing parameter actually used as an optional
second output, you could now experiment, as follows:

[scs,p] = csaps(x,noisy); fnplt(scs,2), hold on
fnplt(csaps(x,noisy,p/2),2,'k--'),
fnplt(csaps(x,noisy,(1+p)/2),2,'r:'), plot(x,noisy,'o')
legend('smoothing spline','more smoothed','less smoothed',...
'noisy data'), hold off

This produces the following picture.

9 Simple Spline Examples

9-6

Noisy Data More or Less Smoothed

At times, you might prefer simply to get the smoothest cubic spline sp that is within a specified
tolerance tol of the given data in the sense that norm(noisy - fnval(sp,x))^2 <= tol. You
create this spline with the command sp = spaps(x,noisy,tol) for your defined tolerance tol.

Least Squares
If you prefer a least squares approximant, you can obtain it by the statement sp =
spap2(knots,k,x,y); in which both the knot sequence knots and the order k of the spline must
be provided.

The popular choice for the order is 4, and that gives you a cubic spline. If you have no clear idea of
how to choose the knots, simply specify the number of polynomial pieces you want used. For example,

sp = spap2(3,4,x,y);

gives a cubic spline consisting of three polynomial pieces. If the resulting error is uneven, you might
try for a better knot distribution by using newknt as follows:

sp = spap2(newknt(sp),4,x,y);

 Cubic Spline Interpolation

9-7

Vector-Valued Functions

Curve Fitting Toolbox™ supports vector-valued splines. For example, if you want a spline curve
through given planar points (x(i), y(i)), i = 1, . . . , n, then the following code defines some data and
then creates and plots such a spline curve, using chord-length parameterization and cubic spline
interpolation with the not-a-knot end condition.

x = [19 43 62 88 114 120 130 129 113 76 135 182 232 298 ...
 348 386 420 456 471 485 463 444 414 348 275 192 106 ...
 30 48 83 107 110 109 92 66 45 23 22 30 40 55 55 52 34 20 16];
y = [306 272 240 215 218 237 275 310 368 424 425 427 428 ...
 397 353 302 259 200 148 105 77 47 28 17 10 12 23 41 43 ...
 77 96 133 155 164 157 148 142 162 181 187 192 202 217 245 266 303];

xy = [x;y];
df = diff(xy,1,2);
t = cumsum([0,sqrt([1 1]*(df.*df))]);
cv = csapi(t,xy);
fnplt(cv)
hold on
plot(x,y,"o")
hold off

If you then wanted to know the area enclosed by this curve, you would want to evaluate the integral

∫y(t)dx(t) =∫y(t)Dx(t)dt, with (x(t), y(t)) the point on the curve corresponding to the parameter

9 Simple Spline Examples

9-8

value t. For the spline curve in cv just constructed, this can be done exactly in one (somewhat
complicated) command:

area = diff(fnval(fnint(...
 fncmb(fncmb(cv,[0 1]),"*",fnder(fncmb(cv,[1 0])))), ...
 fnbrk(cv,"interval")));

To explain, y = fncmb(cv,[0 1]) picks out the second component of the curve in cv, Dx =
fnder(fncmb(cv,[1 0])) provides the derivative of the first component, and yDx =
fncmb(y,"*",Dx) constructs their pointwise product. Then IyDx = fnint(yDx) constructs the
indefinite integral of yDx and, finally, diff(fnval(IyDx,fnbrk(cv,"interval"))) evaluates
that indefinite integral at the endpoints of the basic interval and then takes the difference of the
second from the first value, thus getting the definite integral of yDx over its basic interval. Depending
on whether the enclosed area is to the right or to the left as the curve point travels with increasing
parameter, the resulting number is either positive or negative.

Further, all the values Y (if any) for which the point (X,Y) lies on the spline curve in cv just
constructed can be obtained by the following (somewhat complicated) command:

X = 250; % Define a value of X
Y = fnval(fncmb(cv,[0 1]), ...
 mean(fnzeros(fncmb(fncmb(cv,[1 0]),"-",X))))

Y = 1×2

 423.4902 9.4812

To explain: x = fncmb(cv,[1 0]) picks out the first component of the curve in cv; xmX =
fncmb(x,"-",X) translates that component by X; t = mean(fnzeros(xmX)) provides all the
parameter values for which xmX is zero, that is, for which the first component of the curve equals X; y
= fncmb(cv,[0,1]) picks out the second component of the curve in cv; and, finally, Y =
fnval(y,t) evaluates that second component at those parameter sites at which the first component
of the curve in cv equals X.

As another example of the use of vector-valued functions, suppose that you have solved the equations
of motion of a particle in some specified force field in the plane, obtaining, at discrete times
t j = t(j), j = 1:n, the position (x(t j), y(t j)) as well as the velocity (ẋ(t j), ẏ(t j)) stored in the 4-vector
z(: , j), as you would if, in the standard way, you had solved the equivalent first-order system
numerically. Then the following statement, which uses cubic Hermite interpolation, will produce a
plot of the particle path: fnplt(spapi(augknt(t,4,2),t,reshape(z,2,2*n))).

 Vector-Valued Functions

9-9

Fitting Values at N-D Grid with Tensor-Product Splines

Vector-valued splines are also used in the approximation to gridded data, in any number of variables,
using tensor-product splines. The same spline-construction commands are used, only the form of the
input differs. For example, if x is an m-vector, y is an n-vector, and z is an array of size [m,n], then cs
= csapi({x,y},z); describes a bicubic spline f satisfying f (x(i), y(j)) = z(i, j) for i = 1:m, j = 1:n.
Such a multivariate spline can be vector-valued. For example, the following gives a perfectly
acceptable sphere.

x = 0:4;
y = -2:2;
s2 = 1/sqrt(2);
z(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];
z(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
z(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];
sph = csape({x,y},z,["clamped","periodic"]);
fnplt(sph)
axis equal
axis off
title("Sphere Made by 3-D-Valued " + ...
 "Bivariate Tensor Product Spline")

The sphere's projection onto the (x,z)-plane is plotted by the following.

fnplt(fncmb(sph,[1 0 0; 0 0 1]))
axis equal

9 Simple Spline Examples

9-10

axis off
title("Planar Projection of Spline Sphere")

 Fitting Values at N-D Grid with Tensor-Product Splines

9-11

Fitting Values at Scattered 2-D Sites with Thin-Plate
Smoothing Splines

Tensor-product splines are good for gridded (bivariate and even multivariate) data. For work with
scattered bivariate data, the toolbox provides the thin-plate smoothing spline. Suppose you have
given data values y(j) at scattered data sites x(:,j), j=1:N, in the plane. To give a specific
example,

n = 65; t = linspace(0,2*pi,n+1);
x = [cos(t);sin(t)]; x(:,end) = [0;0];

provides 65 sites, namely 64 points equally spaced on the unit circle, plus the center of that circle.
Here are corresponding data values, namely noisy values of the very nice function

.

y = (x(1,:)+.5).^2 + (x(2,:)+.5).^2;
noisy = y + (rand(size(y))-.5)/3;

Then you can compute a reasonable approximation to these data by

st = tpaps(x,noisy);

and plot the resulting approximation along with the noisy data by

fnplt(st); hold on
plot3(x(1,:),x(2,:),noisy,'wo','markerfacecolor','k')
hold off

and so produce the following picture:

Thin-Plate Smoothing Spline Approximation to Noisy Data

9 Simple Spline Examples

9-12

Postprocessing Splines
You can use the following commands with any example spline, such as the cs, ch and sp examples
constructed in the section “Cubic Spline Interpolation” on page 9-2.

First construct a spline, for example:

sp = spmak(1:6,0:2)

To display a plot of the spline:

fnplt(sp)

To get the value at a, use the syntax fnval(f,a), for example:

fnval(sp,4)

To construct the spline's second derivative:

DDf = fnder(fnder(sp))

An alternative way to construct the second derivative:

DDf = fnder(sp,2);

To obtain the spline's definite integral over an interval [a..b], in this example from 2 to 5:

diff(fnval(fnint(sp),[2;5]))

To compute the difference between two splines, use the form fncmb(sp1,'-',sp2), for example:

fncmb(sp,'-',DDf);

 Postprocessing Splines

9-13

Types of Splines

• “Types of Splines: ppform and B-form” on page 10-2
• “B-Splines and Smoothing Splines” on page 10-4
• “Multivariate and Rational Splines” on page 10-6
• “The ppform” on page 10-8
• “Constructing and Working with ppform Splines” on page 10-10
• “The B-form” on page 10-13
• “Constructing and Working with B-form Splines” on page 10-17
• “Multivariate Tensor Product Splines” on page 10-21
• “NURBS and Other Rational Splines” on page 10-23
• “Constructing and Working with Rational Splines” on page 10-25
• “Constructing and Working with stform Splines” on page 10-28

10

Types of Splines: ppform and B-form
In this section...
“Polynomials vs. Splines” on page 10-2
“ppform” on page 10-2
“B-form” on page 10-2
“Knot Multiplicity” on page 10-3

Polynomials vs. Splines
Polynomials are the approximating functions of choice when a smooth function is to be approximated
locally. For example, the truncated Taylor series

∑
i = 0

n
x− a iDif (a)/i!

provides a satisfactory approximation for f(x) if f is sufficiently smooth and x is sufficiently close to a.
But if a function is to be approximated on a larger interval, the degree, n, of the approximating
polynomial may have to be chosen unacceptably large. The alternative is to subdivide the interval
[a..b] of approximation into sufficiently small intervals [ξj..ξj+1], with a = ξ1<··· <ξl+1 = b, so that, on
each such interval, a polynomial pj of relatively low degree can provide a good approximation to f.
This can even be done in such a way that the polynomial pieces blend smoothly, i.e., so that the
resulting patched or composite function s(x) that equals pj(x) for x∊[ξj ξj+1], all j, has several
continuous derivatives. Any such smooth piecewise polynomial function is called a spline. I.J.
Schoenberg coined this term because a twice continuously differentiable cubic spline with sufficiently
small first derivative approximates the shape of a draftsman's spline.

There are two commonly used ways to represent a polynomial spline, the ppform and the B-form. In
this toolbox, a spline in ppform is often referred to as a piecewise polynomial, while a piecewise
polynomial in B-form is often referred to as a spline. This reflects the fact that piecewise polynomials
and (polynomial) splines are just two different views of the same thing.

ppform
The ppform of a polynomial spline of order k provides a description in terms of its breaks ξ1..ξl+1 and
the local polynomial coefficients cji of its l pieces.

p j x = ∑
i = 1

k
x− ξ j

k− i
c ji, j = 1: l

For example, a cubic spline is of order 4, corresponding to the fact that it requires four coefficients to
specify a cubic polynomial. The ppform is convenient for the evaluation and other uses of a spline.

B-form
The B-form has become the standard way to represent a spline during its construction, because the
B-form makes it easy to build in smoothness requirements across breaks and leads to banded linear
systems. The B-form describes a spline as a weighted sum

10 Types of Splines

10-2

∑
j = 1

n
B j, ka j

of B-splines of the required order k, with their number, n, at least as big as k–1 plus the number of
polynomial pieces that make up the spline. Here, Bj,k = B (·|tj, ...,tj+k) is the jth B-spline of order k for
the knot sequence t1≤t2≤··· ≤tn+k. In particular, Bj,k is piecewise-polynomial of degree < k, with
breaks tj, ...,tj+k , is nonnegative, is zero outside the interval [tj, ..tj+k], and is so normalized that

∑
j = 1

n
B j, k x = 1 on tk..tn + 1

Knot Multiplicity
The multiplicity of the knots governs the smoothness, in the following way: If the number τ occurs
exactly r times in the sequence tj,...tj+k, then Bj,k and its first k-r-1 derivatives are continuous across
the break τ, while the (k-r)th derivative has a jump at τ. You can experiment with all these properties
of the B-spline in a very visual and interactive way using the command bspligui.

See Also

Related Examples
• “Constructing and Working with ppform Splines” on page 10-10
• “Constructing and Working with B-form Splines” on page 10-17

 Types of Splines: ppform and B-form

10-3

B-Splines and Smoothing Splines
In this section...
“B-Spline Properties” on page 10-4
“Variational Approach and Smoothing Splines” on page 10-4

The Cox-de Boor recursion definition of the jth B-spline B j, k x with order k and nondecreasing knot
sequence t = (t0, t1, …, tn) is given by the following formulas:

B j, 1(x) =
1 t j ≤ x < t j + 1
0 x < t j, t j + 1 ≤ x

B j, k + 1(x) =
x− t j

t j + k− 1− t j
B j, k− 1 x +

t j + k− x
t j + k− t j + 1

B j + 1, k− 1 x

The reference page for the bspligui interface lists some of the basic properties of the B-spline. You
can use the interface to gain some experience with B-splines. The most important property of the B-
spline is also the reason for the letter B in its name:

Every space of (univariate) piecewise-polynomials of a given order has a Basis consisting of B-splines.

B-Spline Properties
Because Bj,k is nonzero only on the interval (t j, t j + k), the linear system for the B-spline coefficients is
banded and easy to solve. For example, to construct a spline s of order k with knot sequence t1 ≤ t2
≤··· ≤ tn+k so that s(xi)=yi for i=1, ..., n, use the linear system

∑
j = 1

n
B j, k xi a j = yi i = 1:n

for the unknown B-spline coefficients aj in which each equation has at most k nonzero entries.

Also, many theoretical facts concerning splines are most easily stated or proved in terms of B-splines.
For example, it is possible to match arbitrary data at sites x1 < ⋯ < xn uniquely by a spline of order k
with knot sequence (t1, ..., tn+k) if and only if Bj,k(xj)≠0 for all j (Schoenberg-Whitney Conditions).
Computations with B-splines are facilitated by their stable recurrence relations, which are also
helpful in the conversion from B-form to ppform. The dual functional

a j s : = ∑
i < k

−D k− i− 1Ψ j τ Dis τ

provides a useful expression for the jth B-spline coefficient of the spline s in terms of its value and
derivatives at an arbitrary site τ between tj and tj+k, and with ψj(t):=(tj+1–t)··· (tj+k–1–t)/(k–1)!. It can be
used to show that aj(s) is closely related to s on the interval [tj..tj+k], and seems the most efficient
means for converting from ppform to B-form.

Variational Approach and Smoothing Splines
The above constructive approach is not the only avenue to splines. In the variational approach, a
spline is obtained as a best interpolant, e.g., as the function with smallest mth derivative among all

10 Types of Splines

10-4

those matching prescribed function values at certain sites. As it turns out, among the many such
splines available, only those that are piecewise-polynomials or, perhaps, piecewise-exponentials have
found much use. Of particular practical interest is the smoothing spline s = sp which, for given data
(xi,yi) with x∊[a..b], all i, and given corresponding positive weights wi, and for given smoothing
parameter p, minimizes

p∑
i

wi yi− f xi
2 + 1− p ∫a b

Dmf (t) 2dt

over all functions f with m derivatives. It turns out that the smoothing spline s is a spline of order 2m
with a break at every data site. The smoothing parameter, p, is chosen artfully to strike the right
balance between wanting the error measure

E s = ∑
i

wi yi− s xi
2

small and wanting the roughness measure

F Dms =∫a b
Dms t 2dt

small. The hope is that s contains as much of the information, and as little of the supposed noise, in
the data as possible. One approach to this (used in spaps) is to make F(Dmf) as small as possible
subject to the condition that E(f) be no bigger than a prescribed tolerance. For computational
reasons, spaps uses the (equivalent) smoothing parameter ρ=p/(1–p), i.e., minimizes ρE(f) + F(Dmf).
Also, it is useful at times to use the more flexible roughness measure

F Dms =∫a b
λ t Dms(t) 2dt

with λ a suitable positive weight function.

See Also

Related Examples
• “Constructing and Working with B-form Splines” on page 10-17

 B-Splines and Smoothing Splines

10-5

Multivariate and Rational Splines

In this section...
“Multivariate Splines” on page 10-6
“Rational Splines” on page 10-7

Multivariate Splines
Multivariate splines can be obtained from univariate splines by the tensor product construct. For
example, a trivariate spline in B-form is given by

f x, y, z = ∑
u = 1

U
∑

v = 1

V
∑

w = 1

W
Bu, k x Bv, l y Bw, m z au, v, w

with Bu,k,Bv,l,Bw,m univariate B-splines. Correspondingly, this spline is of order k in x, of order l in y,
and of order m in z. Similarly, the ppform of a tensor-product spline is specified by break sequences in
each of the variables and, for each hyper-rectangle thereby specified, a coefficient array. Further, as
in the univariate case, the coefficients may be vectors, typically 2-vectors or 3-vectors, making it
possible to represent, e.g., certain surfaces in ℜ3.

A very different bivariate spline is the thin-plate spline. This is a function of the form

f x = ∑
j = 1

n− 3
Ψ x− c j a j + x 1 an− 2 + x 2 an− 1 + an

with ψ(x)=|x|2log|x|2 the thin-plate spline basis function, and |x| denoting the Euclidean length of the
vector x. Here, for convenience, denote the independent variable by x, but x is now a vector whose
two components, x(1) and x(2), play the role of the two independent variables earlier denoted x and y.
Correspondingly, the sites cj are points in ℜ2.

Thin-plate splines arise as bivariate smoothing splines, meaning a thin-plate spline minimizes

p ∑
i = 1

n− 3
yi− f ci2 + 1− p ∫ D1D1f 2 + 2 D1D2f 2 + D2D2f 2

over all sufficiently smooth functions f. Here, the yi are data values given at the data sites ci, p is the
smoothing parameter, and Djf denotes the partial derivative of f with respect to x(j). The integral is
taken over the entire ℜ2. The upper summation limit, n–3, reflects the fact that 3 degrees of freedom
of the thin-plate spline are associated with its polynomial part.

Thin-plate splines are functions in stform, meaning that, up to certain polynomial terms, they are a
weighted sum of arbitrary or scattered translates Ψ(· -c) of one fixed function, Ψ. This so-called basis
function for the thin-plate spline is special in that it is radially symmetric, meaning that Ψ(x) only
depends on the Euclidean length, |x|, of x. For that reason, thin-plate splines are also known as RBFs
or radial basis functions. See “Constructing and Working with stform Splines” on page 10-28 for
more information.

10 Types of Splines

10-6

Rational Splines
A rational spline is any function of the form r(x) = s(x)/w(x), with both s and w splines and, in
particular, w a scalar-valued spline, while s often is vector-valued.

Rational splines are attractive because it is possible to describe various basic geometric shapes, like
conic sections, exactly as the range of a rational spline. For example, a circle can so be described by a
quadratic rational spline with just two pieces.

In this toolbox, there is the additional requirement that both s and w be of the same form and even of
the same order, and with the same knot or break sequence. This makes it possible to store the
rational spline r as the ordinary spline R whose value at x is the vector [s(x);w(x)]. Depending on
whether the two splines are in B-form or ppform, such a representation is called here the rBform or
the rpform of such a rational spline.

It is easy to obtain r from R. For example, if v is the value of R at x, then v(1:end-1)/v(end) is the
value of r at x. As another example, consider getting derivatives of r from those of R. Because s = wr,
Leibniz' rule tells us that

Dms = ∑
j = 0

m m
j

D jwDm− jr

where Dms the mth derivative of s.

Hence, if v(:,j) contains Dj–1R(x), j = 1...m + 1, then

v(1:end− 1, m + 1 − ∑
j = 1

m m
j

v(end, j + 1)v(1:end− 1, j + 1) /v(end, 1)

provides the value of DmR(x).

See Also

Related Examples
• “Constructing and Working with Rational Splines” on page 10-25

 Multivariate and Rational Splines

10-7

The ppform
In this section...
“Introduction to ppform” on page 10-8
“Definition of ppform” on page 10-8

Introduction to ppform
A univariate piecewise polynomial f is specified by its break sequence breaks and the coefficient
array coefs of the local power form (see equation in “Definition of ppform” on page 10-8) of its
polynomial pieces; see “Multivariate Tensor Product Splines” on page 10-21 for a discussion of
multivariate piecewise-polynomials. The coefficients may be (column-)vectors, matrices, even ND-
arrays. For simplicity, the present discussion deals only with the case when the coefficients are
scalars.

The break sequence is assumed to be strictly increasing,

breaks(1)
< breaks(2) < ... < breaks(l+1)

with l the number of polynomial pieces that make up f.

While these polynomials may be of varying degrees, they are all recorded as polynomials of the same
order k, i.e., the coefficient array coefs is of size [l,k], with coefs(j,:) containing the k
coefficients in the local power form for the jth polynomial piece, from the highest to the lowest
power; see equation in “Definition of ppform” on page 10-8.

Definition of ppform
The items breaks, coefs, l, and k, make up the ppform of f, along with the dimension d of its
coefficients; usually d equals 1. The basic interval of this form is the interval [breaks(1) ..
breaks(l+1)]. It is the default interval over which a function in ppform is plotted by the plot
command fnplt.

In these terms, the precise description of the piecewise-polynomial f is

f(t) = polyval(coefs(j,:), t - breaks(j)) (10-1)

for breaks(j)≤t<breaks(j+1).

Here, polyval(a,x) is the MATLAB function; it returns the number

∑
j = 1

k
a j xk− j = a 1 xk− 1 + a 2 xk− 2 + ... + a k x0

This defines f(t) only for t in the half-open interval [breaks(1)..breaks(l+1)]. For any other t,
f(t) is defined by

f t = polyval coef s j, : , t − breaks j j =
1, t < breaks 1

l, t ≥ breaks l + 1

10 Types of Splines

10-8

i.e., by extending the first, respectively last, polynomial piece. In this way, a function in ppform has
possible jumps, in its value and/or its derivatives, only across the interior breaks, breaks(2:l). The
end breaks, breaks([1,l+1]), mainly serve to define the basic interval of the ppform.

See Also

Related Examples
• “Constructing and Working with ppform Splines” on page 10-10

 The ppform

10-9

Constructing and Working with ppform Splines

In this section...
“Constructing a ppform” on page 10-10
“Working With ppform Splines” on page 10-10
“Example ppform” on page 10-11

Constructing a ppform
A piecewise-polynomial is usually constructed by some command, through a process of interpolation
or approximation, or conversion from some other form e.g., from the B-form, and is output as a
variable. But it is also possible to make one up from scratch, using the statement

pp
= ppmak(breaks,coefs)

For example, if you enter pp=ppmak(-5:-1,-22:-11), or, more explicitly,

breaks = -5:-1;
coefs = -22:-11; pp = ppmak(breaks,coefs);

you specify the uniform break sequence -5:-1 and the coefficient sequence -22:-11. Because this
break sequence has 5 entries, hence 4 break intervals, while the coefficient sequence has 12 entries,
you have, in effect, specified a piecewise-polynomial of order 3 (= 12/4). The command

fnbrk(pp)

prints out all the constituent parts of this piecewise-polynomial, as follows:

breaks(1:l+1)
 -5 -4 -3 -2 -1
coefficients(d*l,k)
 -22 -21 -20
 -19 -18 -17
 -16 -15 -14
 -13 -12 -11
 pieces number l
 4
order k
 3
dimension d of target
 1

Further, fnbrk can be used to supply each of these parts separately. But the point of Curve Fitting
Toolbox spline functionality is that you usually need not concern yourself with these details. You
simply use pp as an argument to commands that evaluate, differentiate, integrate, convert, or plot the
piecewise-polynomial whose description is contained in pp.

Working With ppform Splines
Here are some functions for operations you can perform on a piecewise-polynomial.

10 Types of Splines

10-10

v = fnval(pp,x) Evaluates
dpp = fnder(pp) Differentiates
dirpp = fndir(pp,dir) Differentiates in the direction dir
ipp = fnint(pp) Integrates
fnmin(pp,[a,b]) Finds the minimum value in given interval
fnzeros(pp,[a,b]) Finds the zeros in the given interval
pj = fnbrk(pp,j) Pulls out the jth polynomial piece
pc = fnbrk(pp,[a b]) Restricts/extends to the interval [a..b]
po = fnxtr(pp,order) Extends outside its basic interval by polynomial of

specified order
fnplt(pp,[a,b]) Plots on given interval
sp = fn2fm(pp,'B-') Converts to B-form
pr = fnrfn(pp,morebreaks) Inserts additional breaks

Inserting additional breaks comes in handy when you want to add two piecewise-polynomials with
different breaks, as is done in the command fncmb.

Example ppform
Execute the following commands to create and plot the particular piecewise-polynomial (ppform)
described in the “Constructing a ppform” on page 10-10 section.

1 Create the piecewise-polynomial with break sequence -5:-1 and coefficient sequence -22:-11:

pp=ppmak(-5:-1,-22:-11)
2 Create the basic plot:

x = linspace(-5.5,-.5,101);
plot(x, fnval(pp,x),'x')

3 Add the break lines to the plot:

breaks=fnbrk(pp,'b'); yy=axis; hold on
for j=1:fnbrk(pp,'l')+1
 plot(breaks([j j]),yy(3:4))
end

4 Superimpose the plot of the polynomial that supplies the third polynomial piece:

plot(x,fnval(fnbrk(pp,3),x),'linew',1.3)
set(gca,'ylim',[-60 -10]), hold off

 Constructing and Working with ppform Splines

10-11

A Piecewise-Polynomial Function, Its Breaks, and the Polynomial Giving Its Third Piece

The figure above is the final picture. It shows the piecewise-polynomial as a sequence of points and,
solidly on top of it, the polynomial from which its third polynomial piece is taken. It is quite noticeable
that the value of a piecewise-polynomial at a break is its limit from the right, and that the value of the
piecewise-polynomial outside its basic interval is obtained by extending its leftmost, respectively its
rightmost, polynomial piece.

While the ppform of a piecewise-polynomial is efficient for evaluation, the construction of a
piecewise-polynomial from some data is usually more efficiently handled by determining first its B-
form, i.e., its representation as a linear combination of B-splines.

See Also

More About
• “Types of Splines: ppform and B-form” on page 10-2
• “The ppform” on page 10-8

10 Types of Splines

10-12

The B-form
In this section...
“Introduction to B-form” on page 10-13
“Definition of B-form” on page 10-13
“B-form and B-Splines” on page 10-13
“B-Spline Knot Multiplicity” on page 10-14
“Choice of Knots for B-form” on page 10-15

Introduction to B-form
A univariate spline f is specified by its nondecreasing knot sequence t and by its B-spline coefficient
sequence a. See “Multivariate Tensor Product Splines” on page 10-21 for a discussion of
multivariate splines. The coefficients may be (column-)vectors, matrices, even ND-arrays. When the
coefficients are 2-vectors or 3-vectors, f is a curve in R2 or R3 and the coefficients are called the
control points for the curve.

Roughly speaking, such a spline is a piecewise-polynomial of a certain order and with breaks t(i). But
knots are different from breaks in that they may be repeated, i.e., t need not be strictly increasing.
The resulting knot multiplicities govern the smoothness of the spline across the knots, as detailed
below.

With [d,n] = size(a), and n+k = length(t), the spline is of order k. This means that its
polynomial pieces have degree < k. For example, a cubic spline is a spline of order 4 because it takes
four coefficients to specify a cubic polynomial.

Definition of B-form
These four items, t, a, n, and k, make up the B-form of the spline f.

This means, explicitly, that

f = ∑
i = 1

n
Bi, ka : , i

with Bi,k=B(·|t(i:i+k)) the ith B-spline of order k for the given knot sequence t, i.e., the B-spline with
knots t(i),...,t(i+k). The basic interval of this B-form is the interval [t(1)..t(n+k)]. It is the default
interval over which a spline in B-form is plotted by the command fnplt. Note that a spline in B-form
is zero outside its basic interval while, after conversion to ppform via fn2fm, this is usually not the
case because, outside its basic interval, a piecewise-polynomial is defined by extension of its first or
last polynomial piece. In particular, a function in B-form may have jumps in value and/or one of its
derivative not only across its interior knots, i.e., across t(i) with t(1)<t(i)<t(n+k), but also across its
end knots, t(1) and t(n+k).

B-form and B-Splines
The building blocks for the B-form of a spline are the B-splines. “A B-Spline of Order 4, and the Four
Cubic Polynomials from Which It Is Made” on page 10-14 shows a picture of such a B-spline, the one

 The B-form

10-13

with the knot sequence [0 1.5 2.3 4 5], hence of order 4, together with the polynomials whose
pieces make up the B-spline. The information for that picture could be generated by the command

bspline([0 1.5 2.3 4 5])

A B-Spline of Order 4, and the Four Cubic Polynomials from Which It Is Made

To summarize: The B-spline with knots t(i)≤····≤ t(i+k) is positive on the interval (t(i)..t(i+k))and is
zero outside that interval. It is piecewise-polynomial of order k with breaks at the sites t(i),...,t(i+k).
These knots may coincide, and the precise multiplicity governs the smoothness with which the two
polynomial pieces join there.

Definition of B-Splines

The shorthand

f ∈ Sk, t

is one of several ways to indicate that f is a spline of order k with knot sequence t, i.e., a linear
combination of the B-splines of order k for the knot sequence t.

A word of caution: The term B-spline has been expropriated by the Computer-Aided Geometric Design
(CAGD) community to mean what is called here a spline in B-form, with the unhappy result that, in
any discussion between mathematicians/approximation theorists and people in CAGD, one now
always has to check in what sense the term is being used.

B-Spline Knot Multiplicity
The rule is

knot multiplicity + condition multiplicity = order

10 Types of Splines

10-14

All Third-Order B-Splines for a Certain Knot Sequence with Various Knot Multiplicities

For example, for a B-spline of order 3, a simple knot would mean two smoothness conditions, i.e.,
continuity of function and first derivative, while a double knot would only leave one smoothness
condition, i.e., just continuity, and a triple knot would leave no smoothness condition, i.e., even the
function would be discontinuous.

“All Third-Order B-Splines for a Certain Knot Sequence with Various Knot Multiplicities” on page 10-
15 shows a picture of all the third-order B-splines for a certain mystery knot sequence t. The breaks
are indicated by vertical lines. For each break, try to determine its multiplicity in the knot sequence
(it is 1,2,1,1,3), as well as its multiplicity as a knot in each of the B-splines. For example, the second
break has multiplicity 2 but appears only with multiplicity 1 in the third B-spline and not at all, i.e.,
with multiplicity 0, in the last two B-splines. Note that only one of the B-splines shown has all its
knots simple. It is the only one having three different nontrivial polynomial pieces. Note also that you
can tell the knot-sequence multiplicity of a knot by the number of B-splines whose nonzero part
begins or ends there. The picture is generated by the following MATLAB statements, which use the
command spcol from this toolbox to generate the function values of all these B-splines at a fine net
x.

t=[0,1,1,3,4,6,6,6]; x=linspace(-1,7,81);
c=spcol(t,3,x);[l,m]=size(c);
c=c+ones(l,1)*[0:m-1];
axis([-1 7 0 m]); hold on
for tt=t, plot([tt tt],[0 m],'-'), end
plot(x,c,'linew',2), hold off, axis off

Further illustrated examples are provided by the example ”Construct and Work with the B-form”. You
can also use the GUI bspligui to study the dependence of a B-spline on its knots experimentally.

Choice of Knots for B-form
The rule “knot multiplicity + condition multiplicity = order” has the following consequence for the
process of choosing a knot sequence for the B-form of a spline approximant. Suppose the spline s is to
be of order k, with basic interval [a..b], and with interior breaks ξ2< ·· ·<ξl. Suppose, further, that, at
ξi, the spline is to satisfy μi smoothness conditions, i.e.,

jumpξiD
js: = D js ξi + − D js ξi− = 0, 0 ≤ j < μi, i = 2, ..., l

 The B-form

10-15

Then, the appropriate knot sequence t should contain the break ξi exactly k – μi times, i=2,...,l. In
addition, it should contain the two endpoints, a and b, of the basic interval exactly k times. This last
requirement can be relaxed, but has become standard. With this choice, there is exactly one way to
write each spline s with the properties described as a weighted sum of the B-splines of order k with
knots a segment of the knot sequence t. This is the reason for the B in B-spline: B-splines are, in
Schoenberg's terminology, basic splines.

For example, if you want to generate the B-form of a cubic spline on the interval [1 .. 3], with interior
breaks 1.5, 1.8, 2.6, and with two continuous derivatives, then the following would be the appropriate
knot sequence:

t = [1, 1, 1, 1, 1.5, 1.8, 2.6, 3, 3, 3, 3];

This is supplied by augknt([1, 1.5, 1.8, 2.6, 3], 4). If you wanted, instead, to allow for a
corner at 1.8, i.e., a possible jump in the first derivative there, you would triple the knot 1.8, i.e., use

t = [1, 1, 1, 1, 1.5, 1.8, 1.8, 1.8, 2.6, 3, 3, 3, 3];

and this is provided by the statement

t = augknt([1, 1.5, 1.8, 2.6, 3], 4, [1, 3, 1]);

See Also

Related Examples
• “Constructing and Working with B-form Splines” on page 10-17

10 Types of Splines

10-16

Constructing and Working with B-form Splines
In this section...
“Construction of B-form” on page 10-17
“Working With B-form Splines” on page 10-17
“Example: B-form Spline Approximation to a Circle” on page 10-18

Construction of B-form
Usually, a spline is constructed from some information, like function values and/or derivative values,
or as the approximate solution of some ordinary differential equation. But it is also possible to make
up a spline from scratch, by providing its knot sequence and its coefficient sequence to the command
spmak.

For example, if you enter

sp = spmak(1:10,3:8);

you supply the uniform knot sequence 1:10 and the coefficient sequence 3:8. Because there are 10
knots and 6 coefficients, the order must be 4(= 10 – 6), i.e., you get a cubic spline. The command

fnbrk(sp)

prints out the constituent parts of the B-form of this cubic spline, as follows:

knots(1:n+k)
 1 2 3 4 5 6 7 8 9 10
coefficients(d,n)
 3 4 5 6 7 8
number n of coefficients
 6
order k
 4
dimension d of target
 1

Further, fnbrk can be used to supply each of these parts separately.

But the point of the Curve Fitting Toolbox spline functionality is that there shouldn't be any need for
you to look up these details. You simply use sp as an argument to commands that evaluate,
differentiate, integrate, convert, or plot the spline whose description is contained in sp.

Working With B-form Splines
The following commands are available for spline work. There is spmak and fnbrk to make up a spline
and take it apart again. Use fn2fm to convert from B-form to ppform. You can evaluate, differentiate,
integrate, minimize, find zeros of, plot, refine, or selectively extrapolate a spline with the aid of
fnval, fnder, fndir, fnint, fnmin, fnzeros, fnplt, fnrfn, and fnxtr.

There are five commands for generating knot sequences:

• augknt for providing boundary knots and also controlling the multiplicity of interior knots

 Constructing and Working with B-form Splines

10-17

• brk2knt for supplying a knot sequence with specified multiplicities
• aptknt for providing a knot sequence for a spline space of given order that is suitable for

interpolation at given data sites
• optknt for providing an optimal knot sequence for interpolation at given sites
• newknt for a knot sequence perhaps more suitable for the function to be approximated

In addition, there is:

• aveknt to supply certain knot averages (the Greville sites) as recommended sites for interpolation
• chbpnt to supply such sites
• knt2brk and knt2mlt for extracting the breaks and/or their multiplicities from a given knot

sequence

To display a spline curve with given two-dimensional coefficient sequence and a uniform knot
sequence, use spcrv.

You can also write your own spline construction commands, in which case you will need to know the
following. The construction of a spline satisfying some interpolation or approximation conditions
usually requires a collocation matrix, i.e., the matrix that, in each row, contains the sequence of
numbers DrBj,k(τ), i.e., the rth derivative at τ of the jth B-spline, for all j, for some r and some site τ.
Such a matrix is provided by spcol. An optional argument allows for this matrix to be supplied by
spcol in a space-saving spline-almost-block-diagonal-form or as a MATLAB sparse matrix. It can be
fed to slvblk, a command for solving linear systems with an almost-block-diagonal coefficient
matrix. If you are interested in seeing how spcol and slvblk are used in this toolbox, have a look at
the commands spapi, spap2, and spaps.

In addition, there are routines for constructing cubic splines. csapi and csape provide the cubic
spline interpolant at knots to given data, using the not-a-knot and various other end conditions,
respectively. A parametric cubic spline curve through given points is provided by cscvn. The cubic
smoothing spline is constructed in csaps.

Example: B-form Spline Approximation to a Circle
As another simple example,

points = .95*[0 -1 0 1;1 0 -1 0];
sp = spmak(-4:8,[points points]);

provides a planar, quartic, spline curve whose middle part is a pretty good approximation to a circle,
as the plot on the next page shows. It is generated by a subsequent

plot(points(1,:),points(2,:),'x'), hold on
fnplt(sp,[0,4]), axis equal square, hold off

Insertion of additional control points ±0.95, ± 0.95 / 1.9 would make a visually perfect circle.

Here are more details. The spline curve generated has the form Σ8
j=1Bj,5a(:, j), with -4:8 the uniform

knot sequence, and with its control points a(:,j) the sequence (0,α),(–α,0),(0,–α),(α,0),(0,α),(–α,0),(0,–
α),(α,0) with α=0.95. Only the curve part between the parameter values 0 and 4 is actually plotted.

To get a feeling for how close to circular this part of the curve actually is, compute its unsigned
curvature. The curvature κ(t) at the curve point γ(t) = (x(t), y(t)) of a space curve γ can be computed
from the formula

10 Types of Splines

10-18

κ = x′y′′− y′x′′
(x′2 + y′2)3/2

in which x', x″, y', and y” are the first and second derivatives of the curve with respect to the
parameter used (t). Treat the planar curve as a space curve in the (x,y)-plane, hence obtain the
maximum and minimum of its curvature at 21 points as follows:

t = linspace(0,4,21);zt = zeros(size(t));
dsp = fnder(sp); dspt = fnval(dsp,t); ddspt = fnval(fnder(dsp),t);
kappa = abs(dspt(1,:).*ddspt(2,:)-dspt(2,:).*ddspt(1,:))./...
 (sum(dspt.^2)).^(3/2);
[min(kappa),max(kappa)]

ans =
 1.6747 1.8611

So, while the curvature is not quite constant, it is close to 1/radius of the circle, as you see from the
next calculation:

1/norm(fnval(sp,0))

ans =
 1.7864

Spline Approximation to a Circle; Control Points Are Marked x

 Constructing and Working with B-form Splines

10-19

See Also

More About
• “Types of Splines: ppform and B-form” on page 10-2
• “The B-form” on page 10-13

10 Types of Splines

10-20

Multivariate Tensor Product Splines
In this section...
“Introduction to Multivariate Tensor Product Splines” on page 10-21
“B-form of Tensor Product Splines” on page 10-21
“Construction With Gridded Data” on page 10-21
“ppform of Tensor Product Splines” on page 10-22
“Example: The Mobius Band” on page 10-22

Introduction to Multivariate Tensor Product Splines
The toolbox provides (polynomial) spline functions in any number of variables, as tensor products of
univariate splines. These multivariate splines come in both standard forms, the B-form and the
ppform, and their construction and use parallels entirely that of the univariate splines discussed in
previous sections, “Constructing and Working with ppform Splines” on page 10-10 and “Constructing
and Working with B-form Splines” on page 10-17. The same commands are used for their
construction and use.

For simplicity, the following discussion deals just with bivariate splines.

B-form of Tensor Product Splines
The tensor-product idea is very simple. If f is a function of x, and g is a function of y, then their
tensor-product p(x,y) := f(x)g(y) is a function of x and y, i.e., a bivariate function. More generally, with
s = (s1,...,sm+h) and t = (t1,...,tn+k) knot sequences and aij (i = 1,...,m; j = 1,...n) a corresponding
coefficient array, you obtain a bivariate spline as

f (x, y) = ∑
i = 1

m
∑

j = 1

n
B x si, ..., si + h B y t j, ..., t j + k ai j

The B-form of this spline comprises the cell array {s,t} of its knot sequences, the coefficient array a,
the numbers vector [m,n], and the orders vector [h,k]. The command

sp = spmak({s,t},a);

constructs this form. Further, fnplt, fnval, fnder, fndir, fnrfn, and fn2fm can be used to plot,
evaluate, differentiate and integrate, refine, and convert this form.

Construction With Gridded Data
You are most likely to construct such a form by looking for an interpolant or approximant to gridded
data. For example, if you know the values z(i,j)=g(x(i),y(j)),i=1:m, j=1:n, of some function g at all the
points in a rectangular grid, then, assuming that the strictly increasing sequence x satisfies the
Schoenberg-Whitney conditions with respect to the above knot sequence s, and that the strictly
increasing sequence y satisfies the Schoenberg-Whitney conditions with respect to the above knot
sequence t, the command

sp=spapi({s,t},[h,k],{x,y},z);

 Multivariate Tensor Product Splines

10-21

constructs the unique bivariate spline of the above form that matches the given values. The command
fnplt(sp) gives you a quick plot of this interpolant. The command pp = fn2fm(sp,'pp') gives
you the ppform of this spline, which is probably what you want when you want to evaluate the spline
at a fine grid((xx(i),yy(j)) for i=1:M, j=1:N), by the command:

values = fnval(pp,{xx,yy});

ppform of Tensor Product Splines
The ppform of such a bivariate spline comprises, analogously, a cell array of break sequences, a
multidimensional coefficient array, a vector of number pieces, and a vector of polynomial orders.
Fortunately, the toolbox is set up in such a way that there is usually no reason for you to concern
yourself with these details of either form. You use interpolation, approximation, or smoothing to
construct splines, and then use the fn... commands to make use of them.

Example: The Mobius Band
Here is an example of a surface constructed as a 3-D-valued bivariate spline. The surface is the
famous Möbius band, obtainable by taking a longish strip of paper and gluing its narrow ends
together, but with a twist. The figure is obtained by the following commands:

x = 0:1; y = 0:4; h = 1/4; o2 = 1/sqrt(2); s = 2; ss = 4;
v(3,:,:) = h*[0, -1, -o2, 0, o2, 1, 0;0, 1, o2, 0, -o2, -1, 0];
v(2,:,:) = [ss, 0, s-h*o2, 0, -s-h*o2, 0, ss;...
 ss, 0, s+h*o2, 0,-s+h*o2, 0, ss];
v(1,:,:) = s*[0, 1, 0, -1+h, 0, 1, 0; 0, 1, 0, -1-h, 0, 1, 0];
cs = csape({x,y},v,{'variational','clamped'});
fnplt(cs), axis([-2 2 -2.5 2.5 -.5 .5]), shading interp
axis off, hold on
values = squeeze(fnval(cs,{1,linspace(y(1),y(end),51)}));
plot3(values(1,:), values(2,:), values(3,:),'k','linew',2)
view(-149,28), hold off

A Möbius Band Made by Vector-Valued Bivariate Spline Interpolation

See Also

More About
• “Types of Splines: ppform and B-form” on page 10-2

10 Types of Splines

10-22

NURBS and Other Rational Splines
In this section...
“Introduction to Rational Splines” on page 10-23
“rsform: rpform, rBform” on page 10-23

Introduction to Rational Splines
A rational spline is, by definition, any function that is the ratio of two splines:

r x = s x /w x

This requires w to be scalar-valued, but s is often chosen to be vector-valued. Further, it is desirable
that w(x) be not zero for any x of interest.

Rational splines are popular because, in contrast to ordinary splines, they can be used to describe
certain basic design shapes, like conic sections, exactly.

rsform: rpform, rBform
The two splines, s and w, in the rational spline r(x)=s(x)/w(x) need not be related to one another. They
could even be of different forms. But, in the context of this toolbox, it is convenient to restrict them to
be of the same form, and even of the same order and with the same breaks or knots. For, under that
assumption, you can represent such a rational spline by the (vector-valued) spline function

R x = s x ; w x

whose values are vectors with one more entry than the values of the rational spline r, and call this the
rsform of the rational spline, or, more precisely, the rpform or rBform, depending on whether s and w
are in ppform or in B-form. Internally, the only thing that distinguishes these rational forms from their
corresponding ordinary spline forms, rpform and B-form, is their form part, i.e., the output obtained
from fnbrk(r,'form'). This is enough to alert the fn... commands to act appropriately on a
function in one of the rsforms.

For example, as is done in fnval, it is very easy to obtain r(x) from R(x). If v is the value of R at x,
then v(1:end-1)/v(end) is the value of r at x. If, in addition, dv is DR(x), then (dv(1:end-1)-
dv(end)*v(1:end-1))/v(end) is Dr(x). More generally, by Leibniz's formula,

D js = D j wr = ∑
i = 0

j j
i

DiwD j− ir

Therefore,

D jr = D js− ∑
i = 1

j j
i

DiwD j− ir /w

This shows that you can compute the derivatives of r inductively, using the derivatives of s and w (i.e.,
the derivatives of R) along with the derivatives of r of order less than j to compute the jth derivative
of r. This inductive scheme is used in fntlr to provide the first so many derivatives of a rational
spline. There is a corresponding formula for partial and directional derivatives for multivariate
rational splines.

 NURBS and Other Rational Splines

10-23

See Also

Related Examples
• “Constructing and Working with Rational Splines” on page 10-25

10 Types of Splines

10-24

Constructing and Working with Rational Splines
In this section...
“Rational Spline Example: Circle” on page 10-25
“Rational Spline Example: Sphere” on page 10-26
“Functions for Working With Rational Splines” on page 10-26

Rational Spline Example: Circle
For example,

circle = rsmak('circle');

provides a rational spline whose values on its basic interval trace out the unit circle, i.e., the circle of
radius 1 with center at the origin, as the command

fnplt(circle), axis square

readily shows; the resulting output is the circle in the figure “A Circle and an Ellipse, Both Given by a
Rational Spline” on page 10-25.

It is easy to manipulate this circle to obtain related shapes. For example, the next commands stretch
the circle into an ellipse, rotate the ellipse 45 degrees, and translate it by (1,1), and then plot it on
top of the circle.

ellipse = fncmb(circle,[2 0;0 1]);
s45 = 1/sqrt(2);
rtellipse = fncmb(fncmb(ellipse, [s45 -s45;s45 s45]), [1;1]);
hold on, fnplt(rtellipse), hold off

As a further example, the "circle" just constructed is put together from four pieces. To highlight the
first such piece, use the following commands:

quarter = fnbrk(fn2fm(circle,'rp'),1);
hold on, fnplt(quarter,3), hold off

In the first command, fn2fm is used to change forms, from one based on the B-form to one based on
the ppform, and then fnbrk is used to extract the first piece, and this piece is then plotted on top of
the circle in “A Circle and an Ellipse, Both Given by a Rational Spline” on page 10-25, with linewidth
3 to make it stand out.

A Circle and an Ellipse, Both Given by a Rational Spline

 Constructing and Working with Rational Splines

10-25

Rational Spline Example: Sphere
As a surface example, the command rsmak('southcap') provides a 3-vector valued rational
bicubic polynomial whose values on the unit square [-1 .. 1]^2 fill out a piece of the unit sphere.
Adjoin to it five suitable rotates of it and you get the unit sphere exactly. For illustration, the following
commands generate two-thirds of that sphere, as shown in “Part of a Sphere Formed by Four Rotates
of a Quartic Rational” on page 10-26.

southcap = rsmak('southcap'); fnplt(southcap)
xpcap = fncmb(southcap,[0 0 -1;0 1 0;1 0 0]);
ypcap = fncmb(xpcap,[0 -1 0; 1 0 0; 0 0 1]);
northcap = fncmb(southcap,-1);
hold on, fnplt(xpcap), fnplt(ypcap), fnplt(northcap)
axis equal, shading interp, view(-115,10), axis off, hold off

Part of a Sphere Formed by Four Rotates of a Quartic Rational

Functions for Working With Rational Splines
Having chosen to represent the rational spline r = s/w in this way by the ordinary spline R=[s;w]
makes it is easy to apply to a rational spline all the fn... commands in the Curve Fitting Toolbox
spline functions, with the following exceptions. The integral of a rational spline need not be a rational
spline, hence there is no way to extend fnint to rational splines. The derivative of a rational spline is
again a rational spline but one of roughly twice the order. For that reason, fnder and fndir will not
touch rational splines. Instead, there is the command fntlr for computing the value at a given x of
all derivatives up to a given order of a given function. If that function is rational, the needed
calculation is based on the considerations given in the preceding paragraph.

The command r = rsmak(shape) provides rational splines in rBform that describe exactly certain
standard geometric shapes , like 'circle', 'arc', 'cylinder', 'sphere', 'cone', 'torus'.
The command fncmb(r,trans) can be used to apply standard transformations to the resulting
shape. For example, if trans is a column-vector of the right length, the shape would be translated by
that vector while, if trans is a suitable matrix like a rotation, the shape would be transformed by
that matrix.

The command r = rscvn(p) constructs the quadratic rBform of a tangent-continuous curve made
up of circular arcs and passing through the given sequence, p, of points in the plane.

A special rational spline form, called a NURBS, has become a standard tool in CAGD. A NURBS is, by
definition, any rational spline for which both s and w are in the same B-form, with each coefficient for
s containing explicitly the corresponding coefficient for w as a factor:

10 Types of Splines

10-26

s = ∑
i

Biv i a : , i , w = ∑
i

Biv i

The normalized coefficients a(:,i) for the numerator spline are more readily used as control points
than the unnormalized coefficients v(i)a(:,i) used in the rBform. Nevertheless, this toolbox provides no
special NURBS form, but only the more general rational spline, but in both B-form (called rBform
internally) and in ppform (called rpform internally).

The rational spline circle used earlier is put together in rsmak by code like the following.

x = [1 1 0 -1 -1 -1 0 1 1]; y = [0 1 1 1 0 -1 -1 -1 0];
s45 = 1/sqrt(2); w =[1 s45 1 s45 1 s45 1 s45 1];
circle = rsmak(augknt(0:4,3,2), [w.*x;w.*y;w]);

Note the appearance of the denominator spline as the last component. Also note how the coefficients
of the denominator spline appear here explicitly as factors of the corresponding coefficients of the
numerator spline. The normalized coefficient sequence [x;y] is very simple; it consists of the
vertices and midpoints, in proper order, of the "unit square". The resulting control polygon is tangent
to the circle at the places where the four quadratic pieces that form the circle abut.

For a thorough discussion of NURBS, see [G. Farin, NURBS, 2nd ed., AKPeters Ltd, 1999] or [Les
Piegl and Wayne Tiller, The NURBS Book, 2nd ed., Springer-Verlag, 1997].

See Also

More About
• “Multivariate and Rational Splines” on page 10-6

 Constructing and Working with Rational Splines

10-27

Constructing and Working with stform Splines
In this section...
“Introduction to the stform” on page 10-28
“Construction and Properties of the stform” on page 10-28
“Working with the stform” on page 10-29

Introduction to the stform
A multivariate function form quite different from the tensor-product construct is the scattered
translates form, or stform for short. As the name suggests, it uses arbitrary or scattered translates ψ(·
–cj) of one fixed function ψ, in addition to some polynomial terms. Explicitly, such a form describes a
function

f x = ∑
j = 1

n− k
ψ x− c j a j + p x

in terms of the basis function ψ, a sequence (cj) of sites called centers and a corresponding sequence
(aj) of n coefficients, with the final k coefficients, an-k+1,...,an, involved in the polynomial part, p.

When the basis function is radially symmetric, meaning that ψ(x) depends only on the Euclidean
length |x| of its argument, x, then ψ is called a radial basis function, and, correspondingly, f is then
often called an RBF.

At present, the toolbox works with just one kind of stform, namely a bivariate thin-plate spline and its
first partial derivatives. For the thin-plate spline, the basis function is ψ(x) = φ(|x|2), with φ(t) = tlogt,
i.e., a radial basis function. Its polynomial part is a linear polynomial, i.e., p(x)=x(1)an – 2+x(2)an – 1+an.
The first partial derivative with respect to its first argument uses, correspondingly, the basis function
ψ(x)=φ(|x|2), with φ(t) = (D1t)·(logt+1) and D1t = D1t(x) = 2x(1), and p(x) = an.

Construction and Properties of the stform
A function in stform can be put together from its center sequence centers and its coefficient
sequence coefs by the command

f = stmak(centers, coefs, type);

where type can be specified as one of 'tp00', 'tp10', 'tp01', to indicate, respectively, a thin-
plate spline, a first partial of a thin-plate spline with respect to the first argument, and a first partial
of a thin-plate spline with respect to the second argument. There is one other choice, 'tp'; it denotes
a thin-plate spline without any polynomial part and is likely to be used only during the construction of
a thin-plate spline, as in tpaps.

A function f in stform depends linearly on its coefficients, meaning that

f x = ∑
j = 1

n
ψ j x a j

with ψj either a translate of the basis function Ψ or else some polynomial. Suppose you wanted to
determine these coefficients aj so that the function f matches prescribed values at prescribed sites xi.

10 Types of Splines

10-28

Then you would need the collocation matrix (ψj(xi)). You can obtain this matrix by the command
stcol(centers,x,type). In fact, because the stform has aj as the jth column, coefs(:,j), of its
coefficient array, it is worth noting that stcol can also supply the transpose of the collocation matrix.
Thus, the command

values = coefs*stcol(centers,x,type,'tr');

would provide the values at the entries of x of the st function specified by centers and type.

The stform is attractive because, in contrast to piecewise polynomial forms, its complexity is the same
in any number of variables. It is quite simple, yet, because of the complete freedom in the choice of
centers, very flexible and adaptable.

On the negative side, the most attractive choices for a radial basis function share with the thin-plate
spline that the evaluation at any site involves all coefficients. For example, plotting a scalar-valued
thin-plate spline via fnplt involves evaluation at a 51-by-51 grid of sites, a nontrivial task when there
are 1000 coefficients or more. The situation is worse when you want to determine these 1000
coefficients so as to obtain the stform of a function that matches function values at 1000 data sites, as
this calls for solving a full linear system of order 1000, a task requiring O(10^9) flops if done by a
direct method. Just the construction of the collocation matrix for this linear system (by stcol) takes
O(10^6) flops.

The command tpaps, which constructs thin-plate spline interpolants and approximants, uses
iterative methods when there are more than 728 data points, but convergence of such iteration may
be slow.

Working with the stform
After you have constructed an approximating or interpolating thin-plate spline st with the aid of
tpaps (or directly via stmak), you can use the following commands:

• fnbrk to obtain its parts or change its basic interval,
• fnval to evaluate it
• fnplt to plot it
• fnder to construct its two first partial derivatives, but no higher order derivatives as they become
infinite at the centers.

This is just one indication that the stform is quite different in nature from the other forms in this
toolbox, hence other fn... commands by and large don't work with stforms. For example, it
makes no sense to use fnjmp, and fnmin or fnzeros only work for univariate functions. It also
makes no sense to use fnint on a function in stform because such functions cannot be integrated
in closed form.

• The command Ast = fncmb(st,A) can be used on st, provided A is something that can be
applied to the values of the function described by st. For example, A might be 'sin', in which
case Ast is the stform of the function whose coefficients are the sine of the coefficients of st. In
effect, Ast describes the function obtained by composing A with st. But, because of the
singularities in the higher-order derivatives of a thin-plate spline, there seems little point to make
fndir or fntlr applicable to such a st.

 Constructing and Working with stform Splines

10-29

Advanced Spline Examples

• “Least-Squares Approximation by Natural Cubic Splines” on page 11-2
• “Solving A Nonlinear ODE” on page 11-6
• “Chebyshev Spline Construction” on page 11-10
• “Approximation by Tensor Product Splines” on page 11-14

11

Least-Squares Approximation by Natural Cubic Splines

The construction of a least-squares approximant usually requires that one have in hand a basis for the
space from which the data are to be approximated. As the example of the space of “natural” cubic
splines illustrates, the explicit construction of a basis is not always straightforward.

This section makes clear that an explicit basis is not actually needed; it is sufficient to have available
some means of interpolating in some fashion from the space of approximants. For this, the fact that
the Curve Fitting Toolbox spline functions support work with vector-valued functions is essential.

This section discusses these aspects of least-squares approximation by “natural” cubic splines.

• “Problem” on page 11-2
• “General Resolution” on page 11-2
• “Need for a Basis Map” on page 11-2
• “A Basis Map for “Natural” Cubic Splines” on page 11-3
• “The One-line Solution” on page 11-3
• “The Need for Proper Extrapolation” on page 11-3
• “The Correct One-Line Solution” on page 11-4
• “Least-Squares Approximation by Cubic Splines” on page 11-5

Problem
You want to construct the least-squares approximation to given data (x,y) from the space S of
“natural” cubic splines with given breaks b(1) < ...< b(l+1).

General Resolution
If you know a basis, (f1,f2,...,fm), for the linear space S of all “natural” cubic splines with break
sequence b, then you have learned to find the least-squares approximation in the form c(1)f1+
c(2)f2+ ... + c(m)fm, with the vector c the least-squares solution to the linear system A*c = y,
whose coefficient matrix is given by

A(i,j) = fj(x(i)), i=1:length(x), j=1:m .

In other words, c = A\y.

Need for a Basis Map
The general solution seems to require that you know a basis. However, in order to construct the
coefficient sequence c, you only need to know the matrix A. For this, it is sufficient to have at hand a
basis map, namely a function F say, so that F(c) returns the spline given by the particular weighted
sum c(1)f1+c(2)f2+... +c(m)fm. For, with that, you can obtain, for j=1:m, the j-th column of A as
fnval(F(ej),x), with ej the j-th column of eye(m), the identity matrix of order m.

Better yet, the Curve Fitting Toolbox spline functions can handle vector-valued functions, so you
should be able to construct the basis map F to handle vector-valued coefficients c(i) as well.
However, by agreement, in this toolbox, a vector-valued coefficient is a column vector, hence the

11 Advanced Spline Examples

11-2

sequence c is necessarily a row vector of column vectors, i.e., a matrix. With that, F(eye(m)) is the
vector-valued spline whose i-th component is the basis element fi, i=1:m. Hence, assuming the
vector x of data sites to be a row vector, fnval(F(eye(m)),x) is the matrix whose (i,j)-entry is
the value of fi at x(j), i.e., the transpose of the matrix A you are seeking. On the other hand, as just
pointed out, your basis map F expects the coefficient sequence c to be a row vector, i.e., the
transpose of the vector A\y. Hence, assuming, correspondingly, the vector y of data values to be a
row vector, you can obtain the least-squares approximation from S to data (x,y) as

F(y/fnval(F(eye(m)),x))

To be sure, if you wanted to be prepared for x and y to be arbitrary vectors (of the same length), you
would use instead

F(y(:).'/fnval(F(eye(m)),x(:).'))

A Basis Map for “Natural” Cubic Splines
What exactly is required of a basis map F for the linear space S of “natural” cubic splines with break
sequence b(1) < ... < b(l+1)? Assuming the dimension of this linear space is m, the map F
should set up a linear one-to-one correspondence between m-vectors and elements of S. But that is
exactly what csape(b, . ,'var') does.

To be explicit, consider the following function F:

function s = F(c)
s = csape(b,c,'var');

For given vector c (of the same length as b), it provides the unique “natural” cubic spline with break
sequence b that takes the value c(i) at b(i), i=1:l+1. The uniqueness is key. It ensures that the
correspondence between the vector c and the resulting spline F(c) is one-to-one. In particular, m
equals length(b). More than that, because the value f(t) of a function f at a point t depends linearly
on f, this uniqueness ensures that F(c) depends linearly on c (because c equals fnval(F(c),b)
and the inverse of an invertible linear map is again a linear map).

The One-line Solution
Putting it all together, you arrive at the following code

csape(b,y(:).'/fnval(csape(b,eye(length(b)),'var'),x(:).'),...
'var')

for the least-squares approximation by “natural” cubic splines with break sequence b.

The Need for Proper Extrapolation
Let's try it on some data, the census data, say, which is provided in MATLAB by the command

load census

and which supplies the years, 1790:10:1990, as cdate and the values as pop. Use the break
sequence 1810:40:1970.

b = 1810:40:1970;
s = csape(b, ...

 Least-Squares Approximation by Natural Cubic Splines

11-3

pop(:)'/fnval(csape(b,eye(length(b)),'var'),cdate(:)'),'var');
fnplt(s, [1750,2050],2.2);
hold on
plot(cdate,pop,'or');
hold off

Have a look at “Least-Squares Approximation by “Natural” Cubic Splines With Three Interior Breaks”
on page 11-4 which shows, in thick blue, the resulting approximation, along with the given data.

This looks like a good approximation, -- except that it doesn't look like a “natural” cubic spline. A
“natural” cubic spline, to recall, must be linear to the left of its first break and to the right of its last
break, and this approximation satisfies neither condition. This is due to the following facts.

The “natural” cubic spline interpolant to given data is provided by csape in ppform, with the interval
spanned by the data sites its basic interval. On the other hand, evaluation of a ppform outside its
basic interval is done, in MATLAB ppval or Curve Fitting Toolbox spline function fnval, by using the
relevant polynomial end piece of the ppform, i.e., by full-order extrapolation. In case of a “natural”
cubic spline, you want instead second-order extrapolation. This means that you want, to the left of the
first break, the straight line that agrees with the cubic spline in value and slope at the first break.
Such an extrapolation is provided by fnxtr. Because the “natural” cubic spline has zero second
derivative at its first break, such an extrapolation is even third-order, i.e., it satisfies three matching
conditions. In the same way, beyond the last break of the cubic spline, you want the straight line that
agrees with the spline in value and slope at the last break, and this, too, is supplied by fnxtr.

Least-Squares Approximation by “Natural” Cubic Splines With Three Interior Breaks

The Correct One-Line Solution
The following one-line code provides the correct least-squares approximation to data (x,y) by
“natural” cubic splines with break sequence b:

fnxtr(csape(b,y(:).'/ ...
 fnval(fnxtr(csape(b,eye(length(b)),'var')),x(:).'),'var'))

But it is, admittedly, a rather long line.

The following code uses this correct formula and plots, in a thinner, red line, the resulting
approximation on top of the earlier plots, as shown in “Least-Squares Approximation by “Natural”
Cubic Splines With Three Interior Breaks” on page 11-4.

11 Advanced Spline Examples

11-4

 ss = fnxtr(csape(b,pop(:)'/ ...
 fnval(fnxtr(csape(b,eye(length(b)),'var')),cdate(:)'),'var'));
hold on, fnplt(ss,[1750,2050],1.2,'r'),grid, hold off
legend('incorrect approximation','population', ...
'correct approximation')

Least-Squares Approximation by Cubic Splines
The one-line solution works perfectly if you want to approximate by the space S of all cubic splines
with the given break sequence b. You don't even have to use the Curve Fitting Toolbox spline
functions for this because you can rely on the MATLAB spline. You know that, with c a sequence
containing two more entries than does b, spline(b,c) provides the unique cubic spline with break
sequence b that takes the value c(i+1) at b(i), all i, and takes the slope c(1) at b(1), and the
slope c(end) at b(end). Hence, spline(b,.) is a basis map for S.

More than that, you know that spline(b,c,xi) provides the value(s) at xi of this interpolating
spline. Finally, you know that spline can handle vector-valued data. Therefore, the following one-
line code constructs the least-squares approximation by cubic splines with break sequence b to data
(x,y) :

spline(b,y(:)'/spline(b,eye(length(b)),x(:)'))

 Least-Squares Approximation by Natural Cubic Splines

11-5

Solving A Nonlinear ODE
This section discusses these aspects of a nonlinear ODE problem:

• “Problem” on page 11-6
• “Approximation Space” on page 11-6
• “Discretization” on page 11-6
• “Numerical Problem” on page 11-7
• “Linearization” on page 11-7
• “Linear System to Be Solved” on page 11-7
• “Iteration” on page 11-8

You can run this example: “Solving a Nonlinear ODE with a Boundary Layer by Collocation”.

Problem
Consider the nonlinear singularly perturbed problem:

εD2g x + g x 2 = 1 on 0..1

Dg 0 = g 1 = 0

Approximation Space
Seek an approximate solution by collocation from C1 piecewise cubics with a suitable break sequence;
for instance,

breaks = (0:4)/4;

Because cubics are of order 4, you have

k = 4;

Obtain the corresponding knot sequence as

knots = augknt(breaks,k,2);

This gives a quadruple knot at both 0 and 1, which is consistent with the fact that you have cubics,
i.e., have order 4.

This implies that you have

n = length(knots)-k;
n = 10;

i.e., 10 degrees of freedom.

Discretization
You collocate at two sites per polynomial piece, i.e., at eight sites altogether. This, together with the
two side conditions, gives us 10 conditions, which matches the 10 degrees of freedom.

11 Advanced Spline Examples

11-6

Choose the two Gaussian sites for each interval. For the standard interval [–0.5,0.5] of length 1, these
are the two sites

gauss = .5773502692*[-1/2; 1/2];

From this, you obtain the whole collection of collocation sites by

ninterv = length(breaks)-1;
temp = ((breaks(2:ninterv+1)+breaks(1:ninterv))/2);
temp = temp([1 1],:) + gauss*diff(breaks);
colsites = temp(:).';

Numerical Problem
With this, the numerical problem you want to solve is to find y ∈ S4, knots that satisfies the nonlinear
system

Dy(0) = 0

(y + εD2y(x) = 1 for x ∈ colsites
y(1) = 0

Linearization
If y is your current approximation to the solution, then the linear problem for the supposedly better
solution z by Newton's method reads

Dz(0) = 0

w0(x)z(x) + εD2z(x) = b(x) for x ∈ colsites
z(1)=0

with w0(x)=2y(x),b(x)=(y(x))2+1. In fact, by choosing

w0(1): = 1, w1(0): = 1
w1(x): = 0, w2(x): = ε for x ∈ colsites

and choosing all other values of w0,w1,w2, b not yet specified to be zero, you can give your system the
uniform shape

w0 x z x + w1 x Dz x + w2 x D2z x = b x , for x ∈ sites

with

sites = [0,colsites,1];

Linear System to Be Solved
Because z∊S4,knots, convert this last system into a system for the B-spline coefficients of z. This
requires the values, first, and second derivatives at every x∊sites and for all the relevant B-splines.
The command spcol was expressly written for this purpose.

Use spcol to supply the matrix

 Solving A Nonlinear ODE

11-7

colmat = ...
spcol(knots,k,brk2knt(sites,3));

From this, you get the collocation matrix by combining the row triple of colmat for x using the
weights w0(x),w1(x),w2(x) to get the row for x of the actual matrix. For this, you need a current
approximation y. Initially, you get it by interpolating some reasonable initial guess from your
piecewise-polynomial space at the sites. Use the parabola x2–1, which satisfies the end conditions as
the initial guess, and pick the matrix from the full matrix colmat. Here it is, in several cautious
steps:

intmat = colmat([2 1+(1:(n-2))*3,1+(n-1)*3],:);
coefs = intmat\[0 colsites.*colsites-1 0].';
y = spmak(knots,coefs.');

Plot the initial guess, and turn hold on for subsequent plotting:

fnplt(y,'g');
legend('Initial Guess (x^2-1)','location','NW');
axis([-0.01 1.01 -1.01 0.01]);
hold on

Iteration
You can now complete the construction and solution of the linear system for the improved
approximate solution z from your current guess y. In fact, with the initial guess y available, you now
set up an iteration, to be terminated when the change z–y is small enough. Choose a relatively mild ε
= .1.

tolerance = 6.e-9;
epsilon = .1;
while 1
 vtau = fnval(y,colsites);
 weights=[0 1 0;
 [2*vtau.' zeros(n-2,1) repmat(epsilon,n-2,1)];
 1 0 0];
 colloc = zeros(n,n);
 for j=1:n
 colloc(j,:) = weights(j,:)*colmat(3*(j-1)+(1:3),:);
 end
 coefs = colloc\[0 vtau.*vtau+1 0].';
 z = spmak(knots,coefs.');
 fnplt(z,'k');
 maxdif = max(max(abs(z.coefs-y.coefs)));
 fprintf('maxdif = %g\n',maxdif)
 if (maxdif<tolerance), break, end
% now reiterate
 y = z;
end
legend({'Initial Guess (x^2-1)' 'Iterates'},'location','NW');

The resulting printout of the errors is:

maxdif = 0.206695
maxdif = 0.01207
maxdif = 3.95151e-005
maxdif = 4.43216e-010

11 Advanced Spline Examples

11-8

If you now decrease ε, you create more of a boundary layer near the right endpoint, and this calls for
a nonuniform mesh.

Use newknt to construct an appropriate finer mesh from the current approximation:

knots = newknt(z, ninterv+1); breaks = knt2brk(knots);
knots = augknt(breaks,4,2);
n = length(knots)-k;

From the new break sequence, you generate the new collocation site sequence:

ninterv = length(breaks)-1;
temp = ((breaks(2:ninterv+1)+breaks(1:ninterv))/2);
temp = temp([1 1], :) + gauss*diff(breaks);
colpnts = temp(:).';
sites = [0,colpnts,1];

Use spcol to supply the matrix

colmat = spcol(knots,k,sort([sites sites sites]));

and use your current approximate solution z as the initial guess:

intmat = colmat([2 1+(1:(n-2))*3,1+(n-1)*3],:);
y = spmak(knots,[0 fnval(z,colpnts) 0]/intmat.');

Thus set up, divide ε by 3 and repeat the earlier calculation, starting with the statements

tolerance=1.e-9;
while 1
 vtau=fnval(y,colpnts);
 .
 .
 .

Repeated passes through this process generate a sequence of solutions, for ε = 1/10, 1/30, 1/90,
1/270, 1/810. The resulting solutions, ever flatter at 0 and ever steeper at 1, are shown in the
example plot. The plot also shows the final break sequence, as a sequence of vertical bars. To view
the plots, run the example “Solving a Nonlinear ODE with a Boundary Layer by Collocation”.

In this example, at least, newknt has performed satisfactorily.

 Solving A Nonlinear ODE

11-9

Chebyshev Spline Construction

This section discusses these aspects of the Chebyshev spline construction:

• “What Is a Chebyshev Spline?” on page 11-10
• “Choice of Spline Space” on page 11-10
• “Initial Guess” on page 11-10
• “Remez Iteration” on page 11-11

What Is a Chebyshev Spline?
The Chebyshev spline C=Ct=Ck,t of order k for the knot sequence t=(ti: i=1:n+k) is the unique
element of Sk,t of max-norm 1 that maximally oscillates on the interval [tk..tn+1] and is positive near tn
+1. This means that there is a unique strictly increasing n-sequence τ so that the function C=Ct∊Sk,t
given by C(τi)=(–1)n – 1, all i, has max-norm 1 on [tk..tn+1]. This implies that τ1=tk,τn=tn+1, and that ti <
τi < tk+i, for all i. In fact, ti+1 ≤ τi ≤ ti+k–1, all i. This brings up the point that the knot sequence is
assumed to make such an inequality possible, i.e., the elements of Sk,t are assumed to be continuous.

In short, the Chebyshev spline C looks just like the Chebyshev polynomial. It performs similar
functions. For example, its extreme sites τ are particularly good sites to interpolate at from Sk,t
because the norm of the resulting projector is about as small as can be; see the toolbox command
chbpnt.

You can run the example “Construct Chebyshev Spline” on page 12-156 to construct C for a particular
knot sequence t.

Choice of Spline Space
You deal with cubic splines, i.e., with order

k = 4;

and use the break sequence

breaks = [0 1 1.1 3 5 5.5 7 7.1 7.2 8];
lp1 = length(breaks);

and use simple interior knots, i.e., use the knot sequence

t = breaks([ones(1,k) 2:(lp1-1) lp1(:,ones(1,k))]);
n = length(t)-k;

Note the quadruple knot at each end. Because k = 4, this makes [0..8] =
[breaks(1)..breaks(lp1)] the interval [tk..tn+1] of interest, with n = length(t)-k the dimension
of the resulting spline space Sk,t. The same knot sequence would have been supplied by

t=augknt(breaks,k);

Initial Guess
As the initial guess for the τ, use the knot averages

11 Advanced Spline Examples

11-10

ti = (ti + 1 + ... + ti + k− 1)/(k− 1)

recommended as good interpolation site choices. These are supplied by

tau=aveknt(t,k);

Plot the resulting first approximation to C, i.e., the spline c that satisfies c(τi)=(–1)n-–i, all i:

b = cumprod(repmat(-1,1,n)); b = b*b(end);
c = spapi(t,tau,b);
fnplt(c,'-.')
grid

Here is the resulting plot.

First Approximation to a Chebyshev Spline

Remez Iteration
Starting from this approximation, you use the Remez algorithm to produce a sequence of splines
converging to C. This means that you construct new τ as the extrema of your current approximation c
to C and try again. Here is the entire loop.

Find the new interior τi as the zeros of Dc—that is, the first derivative of c. First, differentiate

Dc = fnder(c);

 Chebyshev Spline Construction

11-11

Take the zeros of Dc using the fnzeros function. The zeros represent the extrema of the current
approximation c. The result is the new guess for tau.

tau(2:n-1) = mean(fnzeros(Dc));

Then check the extrema values of your current approximation there:

extremes = abs(fnval(c, tau));

The difference

max(extremes)-min(extremes)
 ans = 0.6906

is an estimate of how far you are from total leveling.

Construct a new spline corresponding to the new choice of tau and plot it on top of the old:

c = spapi(t,tau,b);
sites = sort([tau (0:100)*(t(n+1)-t(k))/100]);
values = fnval(c,sites);
hold on, plot(sites,values)

The following code turns on the grid and plots the locations of the extrema.

grid on
plot(tau(2:end-1),zeros(size(tau(2:end-1))),'o');
hold off
lgd = legend('Initial Guess', 'Current Guess', 'Extreme Locations',...
 'location', 'NorthEastOutside');
lgd.Location = 'south';

Following is the resulting figure (legend not shown).

11 Advanced Spline Examples

11-12

A More Nearly Level Spline

If this is not close enough, one simply reiterates the loop. For this example, the next iteration already
produces C to graphic accuracy.

 Chebyshev Spline Construction

11-13

Approximation by Tensor Product Splines

Because the toolbox can handle splines with vector coefficients, it is easy to implement interpolation
or approximation to gridded data by tensor product splines, as the following illustration is meant to
show. You can also run the example “Bivariate Tensor Product Splines”.

To be sure, most tensor product spline approximation to gridded data can be obtained directly with
one of the spline construction commands, like spapi or csape, in this toolbox, without concern for
the details discussed in this example. Rather, this example is meant to illustrate the theory behind the
tensor product construction, and this will be of help in situations not covered by the construction
commands in this toolbox.

This section discusses these aspects of the tensor product spline problem:

• “Choice of Sites and Knots” on page 11-14
• “Least Squares Approximation as Function of y” on page 11-14
• “Approximation to Coefficients as Functions of x” on page 11-16
• “The Bivariate Approximation” on page 11-19
• “Switch in Order” on page 11-17
• “Approximation to Coefficients as Functions of y” on page 11-18
• “The Bivariate Approximation” on page 11-19
• “Comparison and Extension” on page 11-20

Choice of Sites and Knots
Consider, for example, least squares approximation to given data z(i,j)=f(x(i),y(j)),i=1:Nx,j=1:Ny. You
take the data from a function used extensively by Franke for the testing of schemes for surface fitting
(see R. Franke, “A critical comparison of some methods for interpolation of scattered data,” Naval
Postgraduate School Techn. Rep. NPS-53-79-003, March 1979). Its domain is the unit square. You
choose a few more data sites in the x-direction than the y-direction; also, for a better definition, you
use higher data density near the boundary.

x = sort([(0:10)/10,.03 .07, .93 .97]);
y = sort([(0:6)/6,.03 .07, .93 .97]);
[xx,yy] = ndgrid(x,y); z = franke(xx,yy);

Least Squares Approximation as Function of y
Treat these data as coming from a vector-valued function, namely, the function of y whose value at
y(j) is the vector z(:,j), all j. For no particular reason, choose to approximate this function by a vector-
valued parabolic spline, with three uniformly spaced interior knots. This means that you choose the
spline order and the knot sequence for this vector-valued spline as

ky = 3; knotsy = augknt([0,.25,.5,.75,1],ky);

and then use spap2 to provide the least squares approximant to the data:

sp = spap2(knotsy,ky,y,z);

11 Advanced Spline Examples

11-14

In effect, you are finding simultaneously the discrete least squares approximation from Sky,knotsy to
each of the Nx data sets

y j , z i, j j = 1
Ny , i = 1:Nx

In particular, the statements

yy = -.1:.05:1.1;
vals = fnval(sp,yy);

provide the array vals, whose entry vals(i,j) can be taken as an approximation to the value
f(x(i),yy(j))of the underlying function f at the mesh-point x(i),yy(j) because vals(:,j) is the value at
yy(j) of the approximating spline curve in sp.

This is evident in the following figure, obtained by the command:

mesh(x,yy,vals.'), view(150,50)

Note the use of vals.', in the mesh command, needed because of the MATLAB matrix-oriented view
when plotting an array. This can be a serious problem in bivariate approximation because there it is
customary to think of z(i, j) as the function value at the point (x(i), y(j)), while MATLAB thinks of z(i, j)
as the function value at the point (x(j), y(i)).

A Family of Smooth Curves Pretending to Be a Surface

Note that both the first two and the last two values on each smooth curve are actually zero because
both the first two and the last two sites in yy are outside the basic interval for the spline in sp.

Note also the ridges. They confirm that you are plotting smooth curves in one direction only.

 Approximation by Tensor Product Splines

11-15

Approximation to Coefficients as Functions of x
To get an actual surface, you now have to go a step further. Look at the coefficients coefsy of the
spline in sp:

coefsy = fnbrk(sp,'coefs');

Abstractly, you can think of the spline in sp as the function

y ∑
r

coef sy : , r Br, ky y

with the ith entry coefsy(i,r) of the vector coefficient coefsy(:,r) corresponding to x(i), for all
i. This suggests approximating each coefficient vector coefsy(q,:) by a spline of the same order kx
and with the same appropriate knot sequence knotsx. For no particular reason, this time use cubic
splines with four uniformly spaced interior knots:

kx = 4; knotsx = augknt([0:.2:1],kx);
sp2 = spap2(knotsx,kx,x,coefsy.');

Note that spap2(knots,k,x,fx) expects fx(:,j) to be the datum at x(j), i.e., expects each
column of fx to be a function value. To fit the datum coefsy(q, :) at x(q), for all q, present spap2
with the transpose of coefsy.

The Bivariate Approximation
Now consider the transpose of the coefficients cxy of the resulting spline curve:

coefs = fnbrk(sp2,'coefs').';

It provides the bivariate spline approximation

x, y ∑
q
∑
r

coef s q, r Bq, kx x Br, ky y

to the original data

x i , y j z x i , y j , i = 1:Nx, j = 1:Ny

To plot this spline surface over a grid, e.g., the grid

xv = 0:.025:1; yv = 0:.025:1;

you can do the following:

values = spcol(knotsx,kx,xv)*coefs*spcol(knotsy,ky,yv).';
mesh(xv,yv,values.'), view(150,50);

This results in the following figure.

11 Advanced Spline Examples

11-16

Spline Approximation to Franke's Function

This makes good sense because spcol(knotsx,kx,xv) is the matrix whose (i,q)th entry equals the
value Bq,kx(xv(i)) at xv(i) of the qth B-spline of order kx for the knot sequence knotsx.

Because the matrices spcol(knotsx,kx,xv) and spcol(knotsy,ky,yv) are banded, it may be
more efficient, though perhaps more memory-consuming, for large xv and yv to make use of fnval,
as follows:

value2 = ...
 fnval(spmak(knotsx,fnval(spmak(knotsy,coefs),yv).'),xv).';

This is, in fact, what happens internally when fnval is called directly with a tensor product spline, as
in

value2 = fnval(spmak({knotsx,knotsy},coefs),{xv,yv});

Here is the calculation of the relative error, i.e., the difference between the given data and the value
of the approximation at those data sites as compared with the magnitude of the given data:

errors = z - spcol(knotsx,kx,x)*coefs*spcol(knotsy,ky,y).';
disp(max(max(abs(errors)))/max(max(abs(z))))

The output is 0.0539, perhaps not too impressive. However, the coefficient array was only of size 8
6

disp(size(coefs))

to fit a data array of size 15 11.

disp(size(z))

Switch in Order
The approach followed here seems biased, in the following way. First think of the given data z as
describing a vector-valued function of y, and then treat the matrix formed by the vector coefficients of
the approximating curve as describing a vector-valued function of x.

 Approximation by Tensor Product Splines

11-17

What happens when you take things in the opposite order, i.e., think of z as describing a vector-
valued function of x, and then treat the matrix made up from the vector coefficients of the
approximating curve as describing a vector-valued function of y?

Perhaps surprisingly, the final approximation is the same, up to round-off. Here is the numerical
experiment.

Least Squares Approximation as Function of x

First, fit a spline curve to the data, but this time with x as the independent variable, hence it is the
rows of z that now become the data values. Correspondingly, you must supply z.', rather than z, to
spap2,

spb = spap2(knotsx,kx,x,z.');

thus obtaining a spline approximation to all the curves (x ; z (:, j)). In particular, the statement

valsb = fnval(spb,xv).';

provides the matrix valsb, whose entry valsb(i, j) can be taken as an approximation to the value
f(xv(i),y(j)) of the underlying function f at the mesh-point (xv(i),y(j)). This is evident when you plot
valsb using mesh:

mesh(xv,y,valsb.'), view(150,50)

Another Family of Smooth Curves Pretending to Be a Surface

Note the ridges. They confirm that you are, once again, plotting smooth curves in one direction only.
But this time the curves run in the other direction.

Approximation to Coefficients as Functions of y
Now comes the second step, to get the actual surface. First, extract the coefficients:

coefsx = fnbrk(spb,'coefs');

Then fit each coefficient vector coefsx(r,:) by a spline of the same order ky and with the same
appropriate knot sequence knotsy:

spb2 = spap2(knotsy,ky,y,coefsx.');

11 Advanced Spline Examples

11-18

Note that, once again, you need to transpose the coefficient array from spb, because spap2 takes the
columns of its last input argument as the data values.

Correspondingly, there is now no need to transpose the coefficient array coefsb of the resulting
curve:

coefsb = fnbrk(spb2,'coefs');

The Bivariate Approximation
The claim is that coefsb equals the earlier coefficient array coefs, up to round-off, and here is the
test:

disp(max(max(abs(coefs - coefsb))))

The output is 1.4433e-15.

The explanation is simple enough: The coefficients c of the spline s contained in sp =
spap2(knots,k,x,y) depend linearly on the input values y. This implies, given that both c and y
are 1-row matrices, that there is some matrix A=Aknots,k,x so that

c = yAknots, k, x

for any data y. This statement even holds when y is a matrix, of size d-by-N, say, in which case each
datum y(:,j) is taken to be a point in Rd, and the resulting spline is correspondingly d-vector-valued,
hence its coefficient array c is of size d-by-n, with n = length(knots)-k.

In particular, the statements

sp = spap2(knotsy,ky,y,z);
coefsy =fnbrk(sp,'coefs');

provide us with the matrix coefsy that satisfies

coefsy = z . Aknotsy,ky,y

The subsequent computations

 sp2 = spap2(knotsx,kx,x,coefsy.');
 coefs = fnbrk(sp2,'coefs').';

generate the coefficient array coefs, which, taking into account the two transpositions, satisfies

coefs = zAknotsy,ky,y ′ . Aknotsx,kx,x ′
= Aknotsx,kx,x ′ . z . Aknotsy,ky,y

In the second, alternative, calculation, you first computed

 spb = spap2(knotsx,kx,x,z.');
 coefsx = fnbrk(spb,'coefs');

hence coefsx=z'.Aknotsx,kx,x. The subsequent calculation

 spb2 = spap2(knotsy,ky,y,coefsx.');
 coefsb = fnbrk(spb,'coefs');

 Approximation by Tensor Product Splines

11-19

then provided

coefsb = coefsx . ′ . Aknotsy,ky,y = Aknotsx,kx,x . ′ . z . Aknotsy,ky,y

Consequently, coefsb = coefs.

Comparison and Extension
The second approach is more symmetric than the first in that transposition takes place in each call to
spap2 and nowhere else. This approach can be used for approximation to gridded data in any
number of variables.

If, for example, the given data over a three-dimensional grid are contained in some three-dimensional
array v of size [Nx,Ny,Nz], with v(i,j,k) containing the value f(x(i),y(j),z(k)), then you would start
off with

coefs = reshape(v,Nx,Ny*Nz);

Assuming that nj = knotsj - kj, for j = x,y,z, you would then proceed as follows:

sp = spap2(knotsx,kx,x,coefs.');
coefs = reshape(fnbrk(sp,'coefs'),Ny,Nz*nx);
sp = spap2(knotsy,ky,y,coefs.');
coefs = reshape(fnbrk(sp,'coefs'),Nz,nx*ny);
sp = spap2(knotsz,kz,z,coefs.');
coefs = reshape(fnbrk(sp,'coefs'),nx,ny*nz);

See Chapter 17 of PGS or [C. de Boor, “Efficient computer manipulation of tensor products,” ACM
Trans. Math. Software 5 (1979), 173–182; Corrigenda, 525] for more details. The same references
also make clear that there is nothing special here about using least squares approximation. Any
approximation process, including spline interpolation, whose resulting approximation has coefficients
that depend linearly on the given data, can be extended in the same way to a multivariate
approximation process to gridded data.

This is exactly what is used in the spline construction commands csapi, csape, spapi, spaps, and
spap2, when gridded data are to be fitted. It is also used in fnval, when a tensor product spline is to
be evaluated on a grid.

11 Advanced Spline Examples

11-20

Examples

12

Polynomial Curve Fitting

This example shows how to fit polynomials up to sixth degree to some census data using Curve Fitting
Toolbox™. It also shows how to fit a single-term exponential equation and compare this to the
polynomial models.

The steps show how to:

• Load data and create fits using different library models.
• Search for the best fit by comparing graphical fit results, and by comparing numerical fit results

including the fitted coefficients and goodness of fit statistics.

Load and Plot the Data

The data for this example is the file census.mat.

load census

The workspace contains two new variables:

• cdate is a column vector containing the years 1790 to 1990 in 10-year increments.
• pop is a column vector with the U.S. population figures that correspond to the years in cdate.

whos cdate pop

 Name Size Bytes Class Attributes

 cdate 21x1 168 double
 pop 21x1 168 double

plot(cdate,pop,'o')

12 Examples

12-2

Create and Plot a Quadratic

Use the fit function to fit a polynomial to data. You specify a quadratic, or second-degree
polynomial, using 'poly2'. The first output from fit is the polynomial, and the second output, gof,
contains the goodness of fit statistics you will examine in a later step.

[population2,gof] = fit(cdate,pop,'poly2');

To plot the fit, use the plot function. Add a legend in the top left corner.

plot(population2,cdate,pop);
legend('Location','NorthWest');

 Polynomial Curve Fitting

12-3

Create and Plot a Selection of Polynomials

To fit polynomials of different degrees, change the fit type, e.g., for a cubic or third-degree polynomial
use 'poly3'. The scale of the input, cdate, is quite large, so you can obtain better results by
centering and scaling the data. To do this, use the 'Normalize' option.

population3 = fit(cdate,pop,'poly3','Normalize','on');
population4 = fit(cdate,pop,'poly4','Normalize','on');
population5 = fit(cdate,pop,'poly5','Normalize','on');
population6 = fit(cdate,pop,'poly6','Normalize','on');

A simple model for population growth tells us that an exponential equation should fit this census data
well. To fit a single term exponential model, use 'exp1' as the fittype.

populationExp = fit(cdate,pop,'exp1');

Plot all the fits at once, and add a meaningful legend in the top left corner of the plot.

hold on
plot(population3,'b');
plot(population4,'g');
plot(population5,'m');
plot(population6,'b--');
plot(populationExp,'r--');
hold off
legend('cdate v pop','poly2','poly3','poly4','poly5','poly6','exp1', ...
 'Location','NorthWest');

12 Examples

12-4

Plot the Residuals to Evaluate the Fit

To plot residuals, specify 'residuals' as the plot type in the plot function.

plot(population2,cdate,pop,'residuals');

 Polynomial Curve Fitting

12-5

The fits and residuals for the polynomial equations are all similar, making it difficult to choose the
best one.

If the residuals display a systematic pattern, it is a clear sign that the model fits the data poorly.

plot(populationExp,cdate,pop,'residuals');

12 Examples

12-6

The fit and residuals for the single-term exponential equation indicate it is a poor fit overall.
Therefore, it is a poor choice and you can remove the exponential fit from the candidates for best fit.

Examine Fits Beyond the Data Range

Examine the behavior of the fits up to the year 2050. The goal of fitting the census data is to
extrapolate the best fit to predict future population values.

By default, the fit is plotted over the range of the data. To plot a fit over a different range, set the x-
limits of the axes before plotting the fit. For example, to see values extrapolated from the fit, set the
upper x-limit to 2050.

plot(cdate,pop,'o');
xlim([1900, 2050]);
hold on
plot(population6);
hold off

 Polynomial Curve Fitting

12-7

Examine the plot. The behavior of the sixth-degree polynomial fit beyond the data range makes it a
poor choice for extrapolation and you can reject this fit.

Plot Prediction Intervals

To plot prediction intervals, use 'predobs' or 'predfun' as the plot type. For example, to see the
prediction bounds for the fifth-degree polynomial for a new observation up to year 2050:

plot(cdate,pop,'o');
xlim([1900,2050])
hold on
plot(population5,'predobs');
hold off

12 Examples

12-8

Plot prediction intervals for the cubic polynomial up to year 2050:

plot(cdate,pop,'o');
xlim([1900,2050])
hold on
plot(population3,'predobs')
hold off

 Polynomial Curve Fitting

12-9

Examine Goodness-of-Fit Statistics

The struct gof shows the goodness-of-fit statistics for the 'poly2' fit. When you created the
'poly2' fit with the fit function in an earlier step, you specified the gof output argument.

gof

gof = struct with fields:
 sse: 159.0293
 rsquare: 0.9987
 dfe: 18
 adjrsquare: 0.9986
 rmse: 2.9724

Examine the sum of squares due to error (SSE) and the adjusted R-square statistics to help determine
the best fit. The SSE statistic is the least-squares error of the fit, with a value closer to zero indicating
a better fit. The adjusted R-square statistic is generally the best indicator of the fit quality when you
add additional coefficients to your model.

The large SSE for 'exp1' indicates it is a poor fit, which you already determined by examining the fit
and residuals. The lowest SSE value is associated with 'poly6'. However, the behavior of this fit
beyond the data range makes it a poor choice for extrapolation, so you already rejected this fit by
examining the plots with new axis limits.

12 Examples

12-10

The next best SSE value is associated with the fifth-degree polynomial fit, 'poly5', suggesting it
might be the best fit. However, the SSE and adjusted R-square values for the remaining polynomial
fits are all very close to each other. Which one should you choose?

Compare the Coefficients and Confidence Bounds to Determine the Best Fit

Resolve the best fit issue by examining the coefficients and confidence bounds for the remaining fits:
the fifth-degree polynomial and the quadratic.

Examine population2 and population5 by displaying the models, the fitted coefficients, and the
confidence bounds for the fitted coefficients:

population2

population2 =
 Linear model Poly2:
 population2(x) = p1*x^2 + p2*x + p3
 Coefficients (with 95% confidence bounds):
 p1 = 0.006541 (0.006124, 0.006958)
 p2 = -23.51 (-25.09, -21.93)
 p3 = 2.113e+04 (1.964e+04, 2.262e+04)

population5

population5 =
 Linear model Poly5:
 population5(x) = p1*x^5 + p2*x^4 + p3*x^3 + p4*x^2 + p5*x + p6
 where x is normalized by mean 1890 and std 62.05
 Coefficients (with 95% confidence bounds):
 p1 = 0.5877 (-2.305, 3.48)
 p2 = 0.7047 (-1.684, 3.094)
 p3 = -0.9193 (-10.19, 8.356)
 p4 = 23.47 (17.42, 29.52)
 p5 = 74.97 (68.37, 81.57)
 p6 = 62.23 (59.51, 64.95)

You can also get the confidence intervals by using confint :

ci = confint(population5)

ci = 2×6

 -2.3046 -1.6841 -10.1943 17.4213 68.3655 59.5102
 3.4801 3.0936 8.3558 29.5199 81.5696 64.9469

The confidence bounds on the coefficients determine their accuracy. Check the fit equations (e.g.
f(x)=p1*x+p2*x...) to see the model terms for each coefficient. Note that p2 refers to the p2*x
term in 'poly2' and the p2*x^4 term in 'poly5'. Do not compare normalized coefficients directly
with non-normalized coefficients.

The bounds cross zero on the p1, p2, and p3 coefficients for the fifth-degree polynomial. This means
you cannot be sure that these coefficients differ from zero. If the higher order model terms may have
coefficients of zero, they are not helping with the fit, which suggests that this model over fits the
census data.

 Polynomial Curve Fitting

12-11

The fitted coefficients associated with the constant, linear, and quadratic terms are nearly identical
for each normalized polynomial equation. However, as the polynomial degree increases, the
coefficient bounds associated with the higher degree terms cross zero, which suggests over fitting.

However, the small confidence bounds do not cross zero on p1, p2, and p3 for the quadratic fit,
indicating that the fitted coefficients are known fairly accurately.

Therefore, after examining both the graphical and numerical fit results, you should select the
quadratic population2 as the best fit to extrapolate the census data.

Evaluate the Best Fit at New Query Points

Now you have selected the best fit, population2, for extrapolating this census data, evaluate the fit
for some new query points:

cdateFuture = (2000:10:2020).';
popFuture = population2(cdateFuture)

popFuture = 3×1

 274.6221
 301.8240
 330.3341

To compute 95% confidence bounds on the prediction for the population in the future, use the
predint method:

ci = predint(population2,cdateFuture,0.95,'observation')

ci = 3×2

 266.9185 282.3257
 293.5673 310.0807
 321.3979 339.2702

Plot the predicted future population, with confidence intervals, against the fit and data.

plot(cdate,pop,'o');
xlim([1900,2040])
hold on
plot(population2)
h = errorbar(cdateFuture,popFuture,popFuture-ci(:,1),ci(:,2)-popFuture,'.');
hold off
legend('cdate v pop','poly2','prediction', ...
 'Location','NorthWest')

12 Examples

12-12

For more information, see “Polynomial Models” on page 4-14.

 Polynomial Curve Fitting

12-13

Surface Fitting with Custom Equations to Biopharmaceutical
Data

This example shows how to use Curve Fitting Toolbox™ to fit response surfaces to some anesthesia
data to analyze drug interaction effects. Response surface models provide a good method for
understanding the pharmacodynamic interaction behavior of drug combinations.

This data is based on the results in this paper: Kern SE, Xie G, White JL, Egan TD. Opioid-hypnotic
synergy: A response surface analysis of propofol-remifentanil pharmacodynamic interaction in
volunteers. Anesthesiology 2004; 100: 1373-81.

Anesthesia is typically at least a two-drug process, consisting of an opioid and a sedative hypnotic.
This example uses Propofol and Reminfentanil as drug class prototypes. Their interaction is measured
by four different measures of the analgesic and sedative response to the drug combination.
Algometry, Tetany, Sedation, and Laryingoscopy comprise the four measures of surrogate drug effects
at various concentration combinations of Propofol and Reminfentanil.

The following code, using Curve Fitting Toolbox methods, reproduces the interactive surface building
with the Curve Fitting Tool described in “Surface Fitting to Biopharmaceutical Data” on page 5-35.

Load Data

Load the data from file.

data = importdata('OpioidHypnoticSynergy.txt');
Propofol = data.data(:,1);
Remifentanil = data.data(:,2);
Algometry = data.data(:,3);
Tetany = data.data(:,4);
Sedation = data.data(:,5);
Laryingoscopy = data.data(:,6);

Create the Model Fit Type

You can use the fittype function to define the model from the paper, where CA and CB are the drug
concentrations, and IC50A, IC50B, alpha, and n are the coefficients to be estimated. Create the
model fit type.

ft = fittype('Emax*(CA/IC50A + CB/IC50B + alpha*(CA/IC50A) * (CB/IC50B))^n /((CA/IC50A + CB/IC50B + alpha*(CA/IC50A) * (CB/IC50B))^n + 1)', ...
 'independent', {'CA', 'CB'}, 'dependent', 'z', 'problem', 'Emax')

ft =
 General model:
 ft(IC50A,IC50B,alpha,n,Emax,CA,CB) = Emax*(CA/IC50A + CB/IC50B + alpha*(
 CA/IC50A) * (CB/IC50B))^n /((CA/IC50A + CB/IC50B
 + alpha*(CA/IC50A) * (CB/IC50B))^n + 1)

Assume Emax = 1 because the effect output is normalized.

Emax = 1;

Set Fit Options

Set fit options for robust fitting, bounds, and start points.

12 Examples

12-14

opts = fitoptions(ft);
opts.Lower = [0, 0, -5, -0];
opts.Robust = 'LAR';
opts.StartPoint = [0.0089, 0.706, 1.0, 0.746];

Fit and Plot a Surface for Algometry

[f, gof] = fit([Propofol, Remifentanil], Algometry, ft,...
 opts, 'problem', Emax)

Success, but fitting stopped because change in residuals less than tolerance (TolFun).

 General model:
 f(CA,CB) = Emax*(CA/IC50A + CB/IC50B + alpha*(CA/IC50A) * (CB/IC50B
))^n /((CA/IC50A + CB/IC50B + alpha*(CA/IC50A)
 * (CB/IC50B))^n + 1)
 Coefficients (with 95% confidence bounds):
 IC50A = 4.149 (4.123, 4.174)
 IC50B = 9.045 (8.971, 9.118)
 alpha = 8.502 (8.316, 8.688)
 n = 8.288 (8.131, 8.446)
 Problem parameters:
 Emax = 1

gof = struct with fields:
 sse: 0.0842
 rsquare: 0.9991
 dfe: 393
 adjrsquare: 0.9991
 rmse: 0.0146

plot(f, [Propofol, Remifentanil], Algometry);

 Surface Fitting with Custom Equations to Biopharmaceutical Data

12-15

Fit a Surface to Tetany

Reuse the same fittype to create a response surface for tetany.

[f, gof] = fit([Propofol, Remifentanil], Tetany, ft, opts, 'problem', Emax)

 General model:
 f(CA,CB) = Emax*(CA/IC50A + CB/IC50B + alpha*(CA/IC50A) * (CB/IC50B
))^n /((CA/IC50A + CB/IC50B + alpha*(CA/IC50A)
 * (CB/IC50B))^n + 1)
 Coefficients (with 95% confidence bounds):
 IC50A = 4.544 (4.522, 4.567)
 IC50B = 21.22 (21.04, 21.4)
 alpha = 14.94 (14.67, 15.21)
 n = 6.132 (6.055, 6.209)
 Problem parameters:
 Emax = 1

gof = struct with fields:
 sse: 0.0537
 rsquare: 0.9993
 dfe: 393
 adjrsquare: 0.9993
 rmse: 0.0117

plot(f, [Propofol, Remifentanil], Tetany);

12 Examples

12-16

Fit a Surface to Sedation

[f, gof] = fit([Propofol, Remifentanil], Sedation, ft, opts, 'problem', Emax)

 General model:
 f(CA,CB) = Emax*(CA/IC50A + CB/IC50B + alpha*(CA/IC50A) * (CB/IC50B
))^n /((CA/IC50A + CB/IC50B + alpha*(CA/IC50A)
 * (CB/IC50B))^n + 1)
 Coefficients (with 95% confidence bounds):
 IC50A = 1.843 (1.838, 1.847)
 IC50B = 13.7 (13.67, 13.74)
 alpha = 1.986 (1.957, 2.015)
 n = 44.27 (42.56, 45.98)
 Problem parameters:
 Emax = 1

gof = struct with fields:
 sse: 0.0574
 rsquare: 0.9994
 dfe: 393
 adjrsquare: 0.9994
 rmse: 0.0121

plot(f, [Propofol, Remifentanil], Sedation);

 Surface Fitting with Custom Equations to Biopharmaceutical Data

12-17

Fit a Surface to Laryingoscopy

[f, gof] = fit([Propofol, Remifentanil], Laryingoscopy, ft, opts, 'problem', Emax)

 General model:
 f(CA,CB) = Emax*(CA/IC50A + CB/IC50B + alpha*(CA/IC50A) * (CB/IC50B
))^n /((CA/IC50A + CB/IC50B + alpha*(CA/IC50A)
 * (CB/IC50B))^n + 1)
 Coefficients (with 95% confidence bounds):
 IC50A = 5.192 (5.177, 5.207)
 IC50B = 37.77 (37.58, 37.97)
 alpha = 19.67 (19.48, 19.86)
 n = 37 (35.12, 38.87)
 Problem parameters:
 Emax = 1

gof = struct with fields:
 sse: 0.1555
 rsquare: 0.9982
 dfe: 393
 adjrsquare: 0.9982
 rmse: 0.0199

plot(f, [Propofol, Remifentanil], Laryingoscopy);

12 Examples

12-18

 Surface Fitting with Custom Equations to Biopharmaceutical Data

12-19

How to Construct Splines

This example shows how to construct splines in various ways using the spline functions in Curve
Fitting Toolbox™.

Interpolation

You can construct a cubic spline interpolant that matches the cosine function at the following sites x,
using the csapi command.

x = 2*pi*[0 1 .1:.2:.9];
y = cos(x);
cs = csapi(x,y);

You can then view the interpolating spline by using fnplt.

fnplt(cs,2);
axis([-1 7 -1.2 1.2])
hold on
plot(x,y,'o')
hold off

Checking the Interpolant

The cosine function is 2*pi-periodic. How well does our cubic spline interpolant do in that regard?
One way to check is to compute the difference in the first derivative at the two endpoints.

12 Examples

12-20

diff(fnval(fnder(cs), [0 2*pi]))

ans = -0.1375

To enforce periodicity, use csape instead of csapi.

csp = csape(x, y, 'periodic');
hold on
fnplt(csp,'g')
hold off

Now the check gives

diff(fnval(fnder(csp), [0 2*pi]))

ans = -2.2806e-17

Even the second derivative now matches at the endpoints.

diff(fnval(fnder(csp, 2), [0 2*pi]))

ans = -2.2204e-16

The piecewise linear interpolant to the same data is available via spapi. Here we add it to the
previous plot, in red.

pl = spapi(2, x, y);
hold on

 How to Construct Splines

12-21

fnplt(pl, 'r', 2)
hold off

Smoothing

If the data are noisy, you usually want to approximate rather than interpolate. For example, with
these data

x = linspace(0,2*pi,51);
noisy_y = cos(x) + .2*(rand(size(x))-.5);
plot(x,noisy_y,'x')
axis([-1 7 -1.2 1.2])

12 Examples

12-22

interpolation would give the wiggly interpolant shown below in blue.

hold on
fnplt(csapi(x, noisy_y))
hold off

 How to Construct Splines

12-23

In contrast, smoothing with a proper tolerance

tol = (.05)^2*(2*pi)

tol = 0.0157

gives a smoothed approximation, shown below in red.

hold on
fnplt(spaps(x, noisy_y, tol), 'r', 2)
hold off

12 Examples

12-24

The approximation is much worse near the ends of the interval, and is far from periodic. To enforce
periodicity, approximate to periodically extended data, then restrict the approximation to the original
interval.

noisy_y([1 end]) = mean(noisy_y([1 end]));
lx = length(x);
lx2 = round(lx/2);
range = [lx2:lx 2:lx 2:lx2];
sps = spaps([x(lx2:lx)-2*pi x(2:lx) x(2:lx2)+2*pi],noisy_y(range),2*tol);

This gives the more nearly periodic approximation, shown in black.

hold on
fnplt(sps, [0 2*pi], 'k', 2)
hold off

 How to Construct Splines

12-25

Least-Squares Approximation

Alternatively, you could use least-squares approximation to the noisy data by a spline with few
degrees of freedom.

For example, you might try a cubic spline with just four pieces.

spl2 = spap2(4, 4, x, noisy_y);
fnplt(spl2,'b',2);
axis([-1 7 -1.2 1.2])
hold on
plot(x,noisy_y,'x')
hold off

12 Examples

12-26

Knot Selection

When using spapi or spap2, you usually have to specify a particular spline space. This is done by
specifying a knot sequence and an order, and this may be a bit of a problem. However, when doing
spline interpolation to x,y data using a spline of order k, you can use the function optknt to supply
a good knot sequence, as in the following example.

k = 5; % order 5, i.e., we are working with quartic splines
x = 2*pi*sort([0 1 rand(1,10)]);
y = cos(x);
sp = spapi(optknt(x,k), x, y);
fnplt(sp,2,'g');
hold on
plot(x,y,'o')
hold off
axis([-1 7 -1.1 1.1])

 How to Construct Splines

12-27

When doing least-squares approximation, you can use the current approximation to determine a
possibly better knot selection with the aid of newknt. For example, the following approximation to
the exponential function isn't all that good, as can be seen from its error, plotted in red.

x = linspace(0,10,101);
y = exp(x);
sp0 = spap2(augknt(0:2:10,4), 4, x, y);
plot(x,y-fnval(sp0,x),'r','LineWidth',2)

12 Examples

12-28

However, you can use that initial approximation to create another one with the same number of
knots, but which are better distributed. Its error is plotted in black.

sp1 = spap2(newknt(sp0), 4, x, y);
hold on
plot(x,y-fnval(sp1,x),'k','LineWidth',2)
hold off

 How to Construct Splines

12-29

Gridded Data

All the spline interpolation and approximation commands in the Curve Fitting Toolbox can also handle
gridded data, in any number of variables.

For example, here is a bicubic spline interpolant to the Mexican Hat function.

x =.0001+(-4:.2:4);
y = -3:.2:3;
[yy,xx] = meshgrid(y,x);
r = pi*sqrt(xx.^2+yy.^2);
z = sin(r)./r;
bcs = csapi({x,y}, z);
fnplt(bcs)
axis([-5 5 -5 5 -.5 1])

12 Examples

12-30

Here is the least-squares approximation to noisy values of that same function on the same grid.

knotsx = augknt(linspace(x(1), x(end), 21), 4);
knotsy = augknt(linspace(y(1), y(end), 15), 4);
bsp2 = spap2({knotsx,knotsy},[4 4], {x,y},z+.02*(rand(size(z))-.5));
fnplt(bsp2)
axis([-5 5 -5 5 -.5 1])

 How to Construct Splines

12-31

Curves

Gridded data can be handled easily because Curve Fitting Toolbox can deal with vector-valued
splines. This also makes it easy to work with parametric curves.

Here, for example, is an approximation to infinity, obtained by putting a cubic spline curve through
the points marked in the following figure.

t = 0:8;
xy = [0 0;1 1; 1.7 0;1 -1;0 0; -1 1; -1.7 0; -1 -1; 0 0].';
infty = csape(t, xy, 'periodic');
fnplt(infty, 2)
axis([-2 2 -1.1 1.1])
hold on
plot(xy(1,:),xy(2,:),'o')
hold off

12 Examples

12-32

Here is the same curve, but with motion in a third dimension.

roller = csape(t , [xy ;0 1/2 1 1/2 0 1/2 1 1/2 0], 'periodic');
fnplt(roller , 2, [0 4],'b')
hold on
fnplt(roller, 2, [4 8], 'r')
plot3(0,0,0,'o')
hold off

 How to Construct Splines

12-33

The two halves of the curve are plotted in different colors and the origin is marked, as an aid to
visualizing this two-winged space curve.

Surfaces

Bivariate tensor-product splines with values in R^3 give surfaces. For example, here is a good
approximation to a torus.

x = 0:4;
y = -2:2;
R = 4;
r = 2;
v = zeros(3,5,5);
v(3,:,:) = [0 (R-r)/2 0 (r-R)/2 0].'*[1 1 1 1 1];
v(2,:,:) = [R (r+R)/2 r (r+R)/2 R].'*[0 1 0 -1 0];
v(1,:,:) = [R (r+R)/2 r (r+R)/2 R].'*[1 0 -1 0 1];
dough0 = csape({x,y},v,'periodic');
fnplt(dough0)
axis equal, axis off

12 Examples

12-34

Here is a crown of normals to that surface.

nx = 43;
xy = [ones(1,nx); linspace(2,-2,nx)];
points = fnval(dough0,xy)';
ders = fnval(fndir(dough0,eye(2)),xy);
normals = cross(ders(4:6,:),ders(1:3,:));
normals = (normals./repmat(sqrt(sum(normals.*normals)),3,1))';
pn = [points;points+normals];
hold on
for j=1:nx
 plot3(pn([j,j+nx],1),pn([j,j+nx],2),pn([j,j+nx],3))
end
hold off

 How to Construct Splines

12-35

Finally, here is its projection onto the (x,y)-plane.

fnplt(fncmb(dough0, [1 0 0; 0 1 0]))
axis([-5.25 5.25 -4.14 4.14]), axis off

12 Examples

12-36

Scattered Data

It is also possible to interpolate to values given at ungridded data sites in the plane. Consider, for
example, the task of mapping the unit square smoothly to the unit disk. We construct the data values,
marked as circles, and the corresponding data sites, marked as x's. Each data site is connected to its
associated value by an arrow.

n = 64;
t = linspace(0,2*pi,n+1); t(end) = [];
values = [cos(t); sin(t)];
plot(values(1,:),values(2,:),'or')
axis equal, axis off

sites = values./repmat(max(abs(values)),2,1);
hold on
plot(sites(1,:),sites(2,:),'xk')
quiver(sites(1,:),sites(2,:), ...
 values(1,:)-sites(1,:), values(2,:)-sites(2,:))
hold off

 How to Construct Splines

12-37

Then use tpaps to construct a bivariate interpolating vector-valued thin-plate spline.

st = tpaps(sites, values, 1);

The spline does indeed map the unit square smoothly (approximately) to the unit disk, as its plot via
fnplt indicates. The plot shows the image of a uniformly-spaced square grid under the spline map in
st.

hold on
fnplt(st)
hold off

12 Examples

12-38

 How to Construct Splines

12-39

Construct and Work with the B-form

This example shows how to construct and work with the B-form of a spline in Curve Fitting Toolbox™.

Introduction

In Curve Fitting Toolbox, a piecewise polynomial, or pp, function in B-form is often called a spline.

The B-form of a (univariate) pp is specified by its (nondecreasing) knot sequence t and by its B-spline
coefficient sequence a.

Given the knot sequence and coefficient sequence of a pp, the command spmak returns the
corresponding B-form, for use in commands such as fnval (evaluate a function), fnplt (plot a
function), fnder (differentiate a function), and other related commands.

The resulting spline is of order k := length(t) - size(a,2). This means that all its polynomial
pieces have degree < k.

To say that a spline s has knots t and coefficients a means that

n

s(x) := sum B_{j,k}(x) * a(:,j),

j=1

where B_(j,k) = B(. | t_j, ..., t_{j+k}) is the j-th B-spline of order k for the given knot
sequence t, i.e., the B-spline with knots t_j, ..., t_{j+k}. For example,

t = [.1 .4 .5 .8 .9];
a = 1;
fnplt(spmak(t,a),2.5);
tmp = repmat(t,3,1);
ty = repmat(.1*[1;-1;NaN],1,5);
hold on
plot(tmp(:),ty(:))
text(.65,.5,'B(\cdot | .1, .4, .5, .8, .9)','FontSize',12)
text(.05,1.,'s(x) = \Sigma_j B(x | t_j , \ldots, t_{j+k}) a(:,j)', ...
 'FontSize',16,'Color','r')
axis([0 1 -.2 1.2])
title('A B-spline of Order 4')
hold off

12 Examples

12-40

The Local Partition of Unity

The value of the spline

s(x) = sum B_{j,k}(x) a(:,j)

j

at any x in the knot interval [t_i .. t_{i+1}] is a convex combination of the k coefficients
a(:.i-k+1), ..., a(:,i) since, on that interval, only the k B-splines B_{i-k+1,k}, ...,
B_{i,k} are nonzero, and they are nonnegative there and sum to 1, as is illustrated in the next
figure.

This is often summarized by saying that the B-splines provide a local (nonnegative) partition of unity.

k = 3;
n = 3;
t = [1 1.7 3.2 4.2 4.8 6];
tt = (10:60)/10;
vals = fnval(spmak(t,eye(k)),tt);
plot(tt.',vals.');
hold on
ind = find(tt>=t(3)&tt<=t(4));
plot(tt(ind).',vals(:,ind).','LineWidth',3)
plot(t([3 4]),[1 1],'k','LineWidth',3)
ty = repmat(.1*[1;-1;NaN],1,6);
plot([0 0 -.2 0 0 -.2 0 0],[-.5 0 0 0 1 1 1 1.5],'k')

 Construct and Work with the B-form

12-41

text(-.5,0,'0','FontSize',12)
text(-.5,1,'1','FontSize',12)
tmp = repmat(t,3,1);
plot(tmp(:),ty(:),'k');
yd = -.25;
text(t(1),yd,'t_{i-2}','FontSize',12);
text(t(3),yd,'t_i','FontSize',12);
text(t(4),yd,'t_{i+1}','FontSize',12);
text(1.8,.5,'B_{i-2,3}','FontSize',12);
text(5,.45,'B_{i,3}','FontSize',12);
axis([-.5 7 -.5 1.5])
title('B-splines Form a Local Partition of Unity')
axis off
hold off

The Convex Hull Property and the Control Polygon

When the coefficients are points in the plane and, correspondingly, the spline

s(x) = sum B_{j,k}(x) a(:,j)

j

traces out a curve, this means that the curve piece

{ s(x) : t_i <= x <= t_{i+1} }

12 Examples

12-42

highlighted in the figure below by a larger LineWidth, lies in the convex hull, shown in yellow in the
figure below, of the k points a(:,i-k+1), ... a(:,i).

t = 1:9;
c = [2 1.4;1 .5; 2 -.4; 5 1.4; 6 .5; 5 -.4].';
sp = spmak(t,c);
fill(c(1,3:5),c(2,3:5),'y','EdgeColor','y');
hold on
fnplt(sp,t([3 7]),1.5)
fnplt(sp,t([5 6]),3)
plot(c(1,:),c(2,:),':ok')
text(2,-.55,'a(:,i-2)','FontSize',12)
text(5,1.6,'a(:,i-1)','FontSize',12)
text(6.1,.5,'a(:,i)','FontSize',12)
title('The Convex-Hull Property')
axis([.5 7 -.8 1.8])
axis off
hold off

For a quadratic spline (i.e., k = 3), as shown here, it even means that the curve is tangent to the
control polygon (shown as dotted lines). This is the broken line that connects the coefficients, which
are called control points in this connection (shown here as open circles).

The Control Polygon for Scalar-Valued Splines

We can think of the graph of the scalar-valued spline

s = sum B_{j,k}*a(j)

 Construct and Work with the B-form

12-43

j

as the curve x |--> (x,s(x)). Since

x = sum B_{j,k}(x) t^*_j

j

for x in the interval [t_k .. t_{n+1}], where

t^*_i := (t_{i+1} + ... + t_{i+k-1})/(k-1) for i = 1:n

are the knot averages obtainable using the aveknt command, the control polygon for a scalar-valued
spline is the broken line with vertices (t^*_i, a(i)), i=1:n.

The example below shows a cubic spline (k = 4), with 4-fold end knots, hence

t^*_1 = t_1 and t^*_n = t_{n+k}.

t = [0 .2 .35 .47 .61 .84 1]*(2*pi);
s = t([1 3 4 5 7]);
knots = augknt(s,4);
sp = spapi(knots,t,sin(t)+1.8);
fnplt(sp,2);
hold on
c = fnbrk(sp,'c');
ts = aveknt(knots,4);
plot(ts,c,':ok');
tt = [s;s;NaN(size(s))];
ty = repmat(.25*[-1;1;NaN], size(s));
plot(tt(:),ty(:),'r')
plot(ts(1,:),zeros(size(ts)),'*')
text(knots(5),-.5,'t_5','FontSize',12)
text(ts(2),-.45,'t^*_2','FontSize',12)
text(knots(1)-.28,-.5,'t_1=t_4','FontSize',12)
text(knots(end)-.65,-.45,'t_{n+1}=t^*_n=t_{n+4}','FontSize',12)
title('A Cubic Spline and its Control Polygon')
axis([-.72 7 -.5 3.5])
axis off
hold off

12 Examples

12-44

savesp = sp;

The essential parts of the B-form are the knot sequence t and the B-spline coefficient sequence a.
Other parts are the number n of the B-splines or coefficients involved, the order k of its polynomial
pieces, and the dimension d of its coefficients a. In particular, size(a) equals [d,n].

There is one more part, namely the basic interval, [t(1) .. t(end)]. It is used as the default
interval when plotting the function. Also, a spline is taken to be continuous from the right everywhere
except at the right endpoint of the basic interval, where it is taken to be continuous from the left. This
is illustrated in the example below, for a spline created using spmak.

b = 0:3;
sp = spmak(augknt(b,3),[-1,0,1,0,-1]);
x = linspace(-1,4,51);
plot(x,fnval(sp,x),'x')
hold on
axis([-2 5,-1.5,1])
tx = repmat(b,3,1);
ty = repmat(.5*[1;-1;NaN],1,length(b));
plot(tx(:),ty(:),'-r')
legend({'Spline Values' 'Knots'})
hold off
title({'A Spline in B-form is Right(Left)-Continuous ';...
 'at Left(Right) Endpoint of its Basic Interval'})

 Construct and Work with the B-form

12-45

fnbrk can be used to obtain any or all parts of a B-form. For example, here is the output provided by
fnbrk for the B-form of the spline shown above.

fnbrk(sp)

The input describes a B- form

knots(1:n+k)
 0 0 0 1 2 3 3 3

coefficients(d,n)
 -1 0 1 0 -1

number n of coefficients
 5

order k
 3

dimension d of target
 1

However, there is usually no need to know any of these parts. Rather, you use commands like spapi
or spaps to construct the B-form of a spline from some data, then use commands like fnval, fnplt,
fnder, etc., to make use of the spline constructed, without any need to look at its various parts.

The following sections give more detailed information about the B-splines, in particular about the
important role played by knot multiplicity.

12 Examples

12-46

Knot Multiplicity

Here, for k = 2, 3, and 4, are B-splines of order k, and below them their first and second (piecewise)
derivatives, to illustrate some facts about B-splines. Try out the bpspligui tool if you want to
experiment with examples of your own.

cl = ['g','r','b','k','k'];
v = 5.4; d1 = 2.5; d2 = 0; s1 = 1; s2 = .5;
t1 = [0 .8 2];
t2 = [3 4.4 5 6];
t3 = [7 7.9 9.2 10 11];
tt = [t1 t2 t3];
ext = tt([1 end])+[-.5 .5];
plot(ext([1 2]),[v v],cl(5))
hold on
plot(ext([1 2]),[d1 d1],cl(5))
plot(ext([1 2]),[d2 d2],cl(5))
ts = [tt;tt;NaN(size(tt))];
ty = repmat(.2*[-1;0;NaN],size(tt));
plot(ts(:),ty(:)+v,cl(5))
plot(ts(:),ty(:)+d1,cl(5))
plot(ts(:),ty(:)+d2,cl(5))
b1 = spmak(t1,1);
p1 = [t1;0 1 0];
db1 = fnder(b1);
p11 = fnplt(db1,'j');
p12 = fnplt(fnder(db1));
lw = 2;
plot(p1(1,:),p1(2,:)+v,cl(2),'LineWidth',lw)
plot(p11(1,:),s1*p11(2,:)+d1,cl(2),'LineWidth',lw)
plot(p12(1,:),s2*p12(2,:)+d2,cl(2),'LineWidth',lw)
b1 = spmak(t2,1);
p1 = fnplt(b1);
db1 = fnder(b1);
p11 = [t2;fnval(db1,t2)];
p12 = fnplt(fnder(db1),'j');
plot(p1(1,:),p1(2,:)+v,cl(3),'LineWidth',lw)
plot(p11(1,:),s1*p11(2,:)+d1,cl(3),'LineWidth',lw)
plot(p12(1,:),s2*p12(2,:)+d2,cl(3),'LineWidth',lw)
b1 = spmak(t3,1);
p1 = fnplt(b1);
db1 = fnder(b1);
p11 = fnplt(db1);
p12=[t3;fnval(fnder(db1),t3)];
plot(p1(1,:),p1(2,:)+v,cl(4),'LineWidth',lw)
plot(p11(1,:),s1*p11(2,:)+d1,cl(4),'LineWidth',lw)
plot(p12(1,:),s2*p12(2,:)+d2,cl(4),'LineWidth',lw)
tey = v+1.5;
text(t1(2)-.5,tey,'linear','FontSize',12,'Color',cl(2))
text(t2(2)-.8,tey,'quadratic','FontSize',12,'Color',cl(3))
text(t3(3)-.5,tey,'cubic','FontSize',12,'Color',cl(4))
text(-2,v,'B','FontSize',12)
text(-2,d1,'DB','FontSize',12)
text(-2,d2,'D^2B')
axis([-1 12 -2 7.5])
title({'B-splines with Simple Knots and Their Derivatives'})
axis off
hold off

 Construct and Work with the B-form

12-47

1. The B-spline B_{j,k} = B(. | t_j, ..., t_{j+k}) is a pp of order k with breaks at
t_j, ..., t_{j+k} (and nowhere else). Actually, its nontrivial polynomial pieces are all of exact
degree k-1.

For example, the rightmost B-spline above involves 5 knots, hence is of order 4, i.e., a cubic B-spline.
Correspondingly, its second derivative is piecewise linear.

2. B_{j,k} is positive on the interval (t_j .. t_{j+k}) and is zero off that interval. It also
vanishes at the endpoints of that interval, unless the endpoint is a knot of multiplicity k (see the
rightmost example in the next figure).

3. Knot multiplicity determines the smoothness with which the two adjacent polynomials join across
that knot. In shorthand, the rule is:

knot multiplicity + number of smoothness conditions = order

To illustrate this last point, the figure below shows four cubic B-splines and, below them, their first
two derivatives. Each spline has a certain knot of multiplicity 1, 2, 3, 4, as indicated by the lengths of
the knot lines.

d2 = -1;
t1 = [7 7.9 9.2 10 11]-7;
t2 = [7 7.9 7.9 9 10]-2;
t3 = [7 7.9 7.9 7.9 9]+2;
t4 = [7 7.9 7.9 7.9 7.9]+5;
[m,tt] = knt2mlt([t1 t2 t3 t4]);

12 Examples

12-48

ext = tt([1 end])+[-.5 .5];
plot(ext,[v v],cl(5))
hold on
plot(ext,[d1 d1],cl(5))
plot(ext,[d2 d2],cl(5))
ts = [tt;tt;NaN(size(tt))];
ty = .2*[-m-1;zeros(size(m));m];
plot(ts(:),ty(:)+v,cl(5))
plot(ts(:),ty(:)+d1,cl(5))
plot(ts(:),ty(:)+d2,cl(5))
b1 = spmak(t1,1);
p1 = fnplt(b1);
db1 = fnder(b1);
p11 = fnplt(db1);
p12 = [t1;fnval(fnder(db1),t1)];
plot(p1(1,:),p1(2,:)+v,cl(1),'LineWidth',lw)
plot(p11(1,:),s1*p11(2,:)+d1,cl(1),'LineWidth',lw)
plot(p12(1,:),s2*p12(2,:)+d2,cl(1),'LineWidth',lw)
text(-2,v,'B'), text(-2,d1,'DB'), text(-2,d2,'D^2B')
b1 = spmak(t2,1);
p1 = fnplt(b1);
db1 = fnder(b1);
p11 = fnplt(db1);
p12 = fnplt(fnder(db1),'j');
plot(p1(1,:),p1(2,:)+v,cl(2),'LineWidth',lw)
plot(p11(1,:),s1*p11(2,:)+d1,cl(2),'LineWidth',lw)
plot(p12(1,:),s2*s2*p12(2,:)+d2,cl(2),'LineWidth',lw)
b1 = spmak(t3,1);
p1 = fnplt(b1);
db1 = fnder(b1);
p11 = fnplt(db1,'j');
p12 = fnplt(fnder(db1),'j');
plot(p1(1,:),p1(2,:)+v,cl(3),'LineWidth',lw)
plot(p11(1,:),s1*s2*p11(2,:)+d1,cl(3),'LineWidth',lw)
plot(p12(1,:),s2*s2*p12(2,:)+d2,cl(3),'LineWidth',lw)
b1 = spmak(t4,1);
p1 = fnplt(b1);
db1 = fnder(b1);
p11 = fnplt(db1);
p12 = fnplt(fnder(db1));
plot(p1(1,:),p1(2,:)+v,cl(4),'LineWidth',lw)
plot(p11(1,:),s2*p11(2,:)+d1,cl(4),'LineWidth',lw)
plot(p12(1,:),s2*s2*p12(2,:)+d2,cl(4),'LineWidth',lw)
text(t2(2)-.5,tey,'2-fold','FontSize',12,'Color',cl(2))
text(t3(2)-.8,tey,'3-fold','FontSize',12,'Color',cl(3))
text(t4(3)-.8,tey,'4-fold','FontSize',12,'Color',cl(4))
axis([-1 14 -3 7.5])
title('Cubic B-splines With A Knot of Various Multiplicities')
axis off
hold off

 Construct and Work with the B-form

12-49

For example, since the order of a cubic B-spline is 4, a double knot means just 2 smoothness
conditions, i.e., just continuity across that knot of the function and its first derivative.

Refinement and Knot Insertion

Any B-form can be refined, i.e., converted, by knot insertion, into the B-form for the same function,
but for a finer knot sequence. The finer the knot sequence, the closer is the control polygon to the
function being represented.

For example, this figure shows the original (in black) and refined (in red) control polygons for the
cubic spline used earlier.

sp = savesp;
fnplt(sp,2.5);
hold on
c = fnbrk(sp,'c');
plot(aveknt(fnbrk(sp,'k'),4),c,':ok');
b = knt2brk(fnbrk(sp,'k'));
spref = fnrfn(sp,(b(2:end)+b(1:end-1))/2);
cr = fnbrk(spref,'c');
h2 = plot(aveknt(fnbrk(spref,'knots'),4),cr,':*r');
axis([-.72 7 -.5 3.5])
title('A Spline, its Control Polygon, and a Refined Control Polygon')
axis off
hold off

12 Examples

12-50

As a second example, we start with the vertices of the standard diamond as our control points, but
run through the sequence twice.

ozmz = [1 0 -1 0];
c = [ozmz ozmz 1; 0 ozmz ozmz];
circle = spmak(-4:8,c);
fnplt(circle)
hold on
plot(c(1,:),c(2,:),':ok')
axis(1.1*[-1 1 -1 1])
axis equal, axis off
hold off

 Construct and Work with the B-form

12-51

However, when we plot the resulting spline, we get a curve that begins and ends at the origin, due to
the fact that we chose to make the knot sequence simple. Hence our spline vanishes at the endpoints
of its basic interval, [-4 .. 8]. We really only want the part of the spline that corresponds to the
interval [0 .. 4], plotted more boldly in the figure below.

fnplt(circle)
hold on
fnplt(circle,[0 4],4)
plot(c(1,:),c(2,:),':ok')
axis(1.1*[-1 1 -1 1])
title('A Circle as Part of a Spline Curve with a Diamond as Control Polygon')
axis equal, axis off
hold off

12 Examples

12-52

To get just the circle, we restrict our spline to the interval [0 .. 4]. We do this by converting to
ppform, restricting to [0 .. 4], then converting to B-form.

circ = fn2fm(fnbrk(fn2fm(circle,'pp'),[0 4]),'B-');
fnplt(circ,2.5)
hold on
cc = fnbrk(circ,'c');
plot(cc(1,:),cc(2,:),':ok')
axis(1.1*[-1 1 -1 1])
axis equal, axis off
hold off

 Construct and Work with the B-form

12-53

Refinement of the resulting knot sequence leads to a control polygon much closer to the circle.

ccc = fnbrk(fnrfn(circ,.5:4),'c');
hold on
plot(ccc(1,:),ccc(2,:),'-r*')
title('A Circle as a Spline Curve, its Control Polygon, and a Refinement')
hold off

12 Examples

12-54

Multivariate Splines

A spline in Curve Fitting Toolbox can also be multivariate, namely, the tensor product of univariate
splines. The B-form for such a function is only slightly more complicated, with the knots now a cell
array containing the various univariate knot sequences, and the coefficient array suitably
multidimensional.

For example, this random spline surface is cubic in the first variable (there are 11 knots and 7
coefficients in that variable), but only piecewise constant in the second variable ((2+5+2)-8 = 1).

fnplt(spmak({augknt(0:4,4),augknt(0:4,3)}, rand(7,8)))

 Construct and Work with the B-form

12-55

12 Examples

12-56

Construct and Work with the PPFORM

This example shows how to construct and work with the ppform of a spline in Curve Fitting
Toolbox™.

Introduction

A (univariate) piecewise polynomial, or pp for short, is characterized by its break sequence, breaks
say, and its coefficient array, coefs say, of the local power form of its polynomial pieces. The break
sequence is assumed to be strictly increasing,

 breaks(1) < breaks(2) < ... < breaks(l+1),

with l the number of polynomial pieces that make up the pp. In the figure below, breaks is [0,1,4,6],
hence l is 3.

While these polynomials may be of varying degrees, they are all recorded as polynomials of the same
order k, i.e., the coefficient array coefs is of size [l,k], with coefs(j,:) containing the k
coefficients in the local power form for the j-th polynomial piece.

Here is an example of a pp made up of three quadratic polynomials, i.e., l = k = 3. The breaks are
marked in red.

sp = spmak([0 1 4 4 6],[2 -1]);
pp = fn2fm(sp,'pp') ;
breaks = fnbrk(pp,'b');
coefs = fnbrk(pp,'c');
coefs(3,[1 2]) = [0 1];
pp = ppmak(breaks,coefs,1);
fnplt(pp,[breaks(1)-1 breaks(2)],'g',1.8)
hold on
fnplt(pp, breaks([2 3]),'b',1.8)
fnplt(pp,[breaks(3),breaks(4)+1],'m',1.8)
lp1 = length(breaks);
xb = repmat(breaks,3,1);
yb = repmat([2;-2.2;NaN],1,lp1);
plot(xb(:),yb(:),'r')
axis([-1 7 -2.5 2.3])
hold off

 Construct and Work with the PPFORM

12-57

The precise description of the pp in terms of the break sequence breaks and the coefficient array
coefs is

 pp(t) = polyval(coefs(j,:), t-breaks(j))

 for breaks(j) <= t < breaks(j+1)

where, to recall,

 polyval(a,x) = a(1)*x^(k-1) + a(2)*x^(k-2) + ... + a(k)*x^0.

For the pp in the figure above, breaks(1) is 0, and coefs(1,:) is [-1/2 0 0], while breaks(3) is 4,
and coefs(3,:) is [0 1 -1]. For t not in [breaks(1) .. breaks(l+1)], pp(t) is defined by
extending the first or last polynomial piece.

A pp is usually constructed through a process of interpolation or approximation. But it is also possible
to make one up in ppform from scratch, using the command ppmak. For example, the pp above can be
obtained as

breaks = [0 1 4 6];
coefs = [1/2 0 0 -1/2 1 1/2 0 1 -1];
fn = ppmak(breaks,coefs)

fn =

 struct with fields:

12 Examples

12-58

 form: 'pp'
 breaks: [0 1 4 6]
 coefs: [3x3 double]
 pieces: 3
 order: 3
 dim: 1

This returns, in fn, a complete description of this pp function in the so-called ppform.

Various commands in Curve Fitting Toolbox can operate on this form. The remaining sections show
some examples.

Operating on Piecewise Polynomials

To evaluate a pp, use the fnval command.

fnval(fn, -1:7)

ans =

 Columns 1 through 7

 0.5000 0 0.5000 1.0000 0.5000 -1.0000 0

 Columns 8 through 9

 1.0000 2.0000

To differentiate a pp, use the fnder command.

dfn = fnder (fn);
hold on
fnplt(dfn, 'jumps','y', 3)
hold off
h1 = findobj(gca,'Color','y');
legend(h1,{'First Derivative'},'location','SW')

 Construct and Work with the PPFORM

12-59

Note that the derivative of the example pp is continuous at 1 but discontinuous at 4. Also note that,
by default, fnplt plots a ppform on its basic interval, i.e., on the interval [breaks(1) ..
breaks(end)].

You can also use fnder to take the second derivative of a pp.

ddfn = fnder(fn, 2);
hold on
fnplt(ddfn ,'j', 'k', 1.6)
hold off
h2 = findobj(gca,'Color','k');
legend([h1 h2],{'First Derivative' 'Second Derivative'},'location','SW')

12 Examples

12-60

The second derivative is piecewise constant.

Note that differentiation via fnder is done separately for each polynomial piece. For example,
although the first derivative has a jump discontinuity across 4, the second derivative is not infinite
there. This has consequences when we integrate the second derivative.

To integrate a pp, use the fnint command.

iddfn = fnint(ddfn);
hold on
fnplt(iddfn, 'b', .5)
hold off
h3 = findobj(gca,'Color','b', 'LineWidth',.5);
legend([h1 h2 h3],{'First Derivative' 'Second Derivative' ...
 'Integral of Second Derivative'},'location','SW')

 Construct and Work with the PPFORM

12-61

Note that integration of the second derivative does recover the first derivative, except for the jump
across 4, which cannot be recovered, since the integral of any pp function is continuous.

You can obtain parts with the aid of the command fnbrk. For example

breaks = fnbrk(fn, 'breaks')

breaks =

 0 1 4 6

recovers the break sequence of the pp in fn, while

piece2 = fnbrk(fn, 2);

recovers the second polynomial piece, as this plot confirms.

fnplt(pp,[breaks(1)-1 breaks(2)],'g',1.8)
hold on
fnplt(piece2, 'b', 2.5, breaks([2 3])+[-1 .5])
fnplt(pp,[breaks(3),breaks(4)+1],'m',1.8)
plot(xb(:),yb(:),'r')
title('The Polynomial that Supplies the Second Polynomial Piece')
hold off
axis([-1 7 -2.5 2.3])

12 Examples

12-62

Vector-Valued Piecewise Polynomials

A pp can also be vector-valued, to describe a curve, in 2-space or 3-space. In that case, each local
polynomial coefficient is a vector rather than a number, but nothing else about the ppform changes.
There is one additional part of the ppform to record this, the dimension of its target.

For example, here is a 2-vector-valued pp describing the unit square, as its plot shows. It is a 2D-
curve, hence its dimension is 2.

square = ppmak(0:4, [1 0 0 1 -1 1 0 0 ; 0 0 1 0 0 1 -1 1]);
fnplt(square,'r',2)
axis([-.5 1.5 -.5 1.5])
axis equal
title('A Vector-Valued PP that Describes a Square')

 Construct and Work with the PPFORM

12-63

Multivariate Piecewise Polynomials

A pp in Curve Fitting Toolbox can also be multivariate, namely, a tensor product of univariate pp
functions. The ppform of such a multivariate pp is only slightly more complicated, with breaks now a
cell array containing the break sequence for each variable, and coefs now a multidimensional array.
It is much harder to make up a non-random such function from scratch, so we won't try that here,
particularly since the toolbox is meant to help with the construction of pp functions from some
conditions about them. For example, the sphere in this figure is constructed with the aid of csape.

x = 0:4;
y = -2:2;
s2 = 1/sqrt(2);
v = zeros(3,7,5);
v(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];
v(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
v(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];
sph = csape({x,y},v,{'clamped','periodic'});
fnplt(sph)
axis equal
axis off
title('A Sphere Described by a Bicubic 3-Vector-Valued Spline')

12 Examples

12-64

While the ppform of a spline is efficient for evaluation, the construction of a spline from some data is
usually handled more efficiently by first determining its B-form, i.e., its representation as a linear
combination of B-splines. For more information, see “Construct and Work with the B-form” on page
12-40.

 Construct and Work with the PPFORM

12-65

How to Choose Knots

This example shows how to select and optimize knots using the optknt and newknt commands from
Curve Fitting Toolbox™.

Sample Data

Here are some sample data, much used for testing spline approximation with variable knots, the so-
called Titanium Heat Data. They record some property of titanium measured as a function of
temperature.

[xx,yy] = titanium;
plot(xx,yy,'x');
axis([500 1100 .55 2.25]);
title('The Titanium Heat Data');
hold on

Notice the rather sharp peak. We'll use these data to illustrate some methods for knot selection.

First, we pick a few data points from these somewhat rough data. We will interpolate using this
subset, then compare results to the full dataset.

pick = [1 5 11 21 27 29 31 33 35 40 45 49];
tau = xx(pick);
y = yy(pick);

12 Examples

12-66

plot(tau,y,'ro');
legend({'Full Dataset' 'Subsampled Data'}, 'location','NW');

General Considerations

A spline of order k with n+k knots has n degrees of freedom. Since we have 12 data sites, tau(1)
< ... < tau(12), a fit with a cubic spline, i.e., a fourth order spline, requires a knot sequence t of
length 12+4.

Moreover, the knot sequence t must satisfy the Schoenberg-Whitney conditions, i.e., must be such
that the i-th data site lies in the support of the i-th B-spline, i.e.,

t(i) < tau(i) < t(i+k) for all i,

with equality allowed only in case of a knot of multiplicity k.

One way to choose a knot sequence satisfying all these conditions is as the optimal knots, of Gaffney/
Powell and Micchelli/Rivlin/Winograd.

Optimal Knots

In optimal spline interpolation, to values at sites

tau(1), ..., tau(n)

 How to Choose Knots

12-67

say, the knots are chosen so as to minimize the constant in a standard error formula. Specifically, the
first and the last data site are chosen as k-fold knots. The remaining n-k knots are supplied by
optknt.

Here is the beginning of the help from optknt:

OPTKNT Optimal knot distribution.

OPTKNT(TAU,K) returns an `optimal' knot sequence for

interpolation at data sites TAU(1), ..., TAU(n) by splines of

order K. TAU must be an increasing sequence, but this is not

checked.

OPTKNT(TAU,K,MAXITER) specifies the number MAXITER of iterations

to be tried, the default being 10.

The interior knots of this knot sequence are the n-K

sign-changes in any absolutely constant function h ~= 0 that

satisfies

integral{ f(x)h(x) : TAU(1) < x < TAU(n) } = 0

for all splines f of order K with knot sequence TAU.

Trying OPTKNT

We try using optknt for interpolation on our example, interpolating by cubic splines to data

(tau(i), y(i)), for i = 1, ..., n.

k = 4;
osp = spapi(optknt(tau,k), tau,y);

fnplt(osp,'r');
hl = legend({'Full Dataset' 'Subsampled Data' ...
 'Cubic Spline Interpolant Using Optimal knots'}, ...
 'location','NW');
hl.Position = hl.Position-[.14,0,0,0];

12 Examples

12-68

This is a bit disconcerting!

Here, marked by stars, are also the interior optimal knots:

xi = fnbrk(osp,'knots');
xi([1:k end+1-(1:k)]) = [];
plot(xi,repmat(1.4, size(xi)),'*');
hl = legend({'Full Dataset' 'Subsampled Data' ...
 'Cubic Spline Interpolant Using Optimal knots' ...
 'Optimal Knots'}, 'location','NW');
hl.Position = hl.Position-[.14,0,0,0];

 How to Choose Knots

12-69

What Happened?

The knot choice for optimal interpolation is designed to make the maximum over all functions f of the
ratio

norm(f - If) / norm(D^k f)

as small as possible, where the numerator is the norm of the interpolation error, f - If, and the
denominator is the norm of the k-th derivative of the interpolant, D^k f. Since our data imply that
D^k f is rather large, the interpolation error near the flat part of the data is of acceptable size for
such an `optimal' scheme.

Actually, for these data, the ordinary cubic spline interpolant provided by csapi does quite well:

cs = csapi(tau,y);
fnplt(cs,'g',2);
hl = legend({'Full Dataset' 'Subsampled Data' ...
 'Cubic Spline Interpolant Using Optimal knots' ...
 'Optimal Knots' 'Cubic Spline Interpolant Using CSAPI'}, ...
 'location','NW');
hl.Position = hl.Position-[.14,0,0,0];
hold off

12 Examples

12-70

Knot Choice for Least Squares Approximation

Knots must be selected when doing least-squares approximation by splines. One approach is to use
equally-spaced knots to begin with, then use newknt with the approximation obtained for a better
knot distribution.

The next sections illustrate these steps with the full titanium heat data set.

Least Squares Approximation with Uniform Knot Sequence

We start with a uniform knot sequence.

unif = linspace(xx(1), xx(end), 2+fix(length(xx)/4));
sp = spap2(augknt(unif, k), k, xx, yy);
plot(xx,yy,'x');
hold on
fnplt(sp,'r');
axis([500 1100 .55 2.25]);
title('The Titanium Heat Data');
hl = legend({'Full Dataset' ...
 'Least Squares Cubic Spline Using Uniform Knots'}, ...
 'location','NW');
hl.Position = hl.Position-[.14,0,0,0];

 How to Choose Knots

12-71

This is not at all satisfactory. So we use newknt for a spline approximation of the same order and
with the same number of polynomial pieces, but the breaks better distributed.

Using NEWKNT to Improve the Knot Distribution

spgood = spap2(newknt(sp), k, xx,yy);
fnplt(spgood,'g',1.5);
hl = legend({'Full Dataset' ...
 'Least Squares Cubic Spline Using Uniform Knots' ...
 'Least Squares Cubic Spline Using NEWKNT'}, ...
 'location','NW');
hl.Position = hl.Position-[.14,0,0,0];
hold off

12 Examples

12-72

This is quite good. Incidentally, even one interior knot fewer would not have sufficed in this case.

 How to Choose Knots

12-73

Cubic Spline Interpolation

This example shows how to use the csapi and csape commands from Curve Fitting Toolbox™ to
construct cubic spline interpolants.

The CSAPI Command

The command

values = csapi(x,y,xx)

returns the values at xx of the cubic spline interpolant to the given data (x,y), using the not-a-knot
end condition. This interpolant is a piecewise cubic function, with break sequence x, whose cubic
pieces join together to form a function with two continuous derivatives. The "not-a-knot" end
condition means that, at the first and last interior break, even the third derivative is continuous (up to
round-off error).

Specifying only two data points results in a straight line interpolant.

x = [0 1];
y = [2 0];
xx = linspace(0,6,121);
plot(xx,csapi(x,y,xx),'k-',x,y,'ro')
title('Interpolant to Two Points')

Specifying three data points gives a parabola.

12 Examples

12-74

x = [2 3 5];
y = [1 0 4];
plot(xx,csapi(x,y,xx),'k-',x,y,'ro')
title('Interpolant to Three Points')

More generally, four or more data points give a cubic spline.

x = [1 1.5 2 4.1 5];
y = [1 -1 1 -1 1];
plot(xx,csapi(x,y,xx),'k-',x,y,'ro')
title('Cubic Spline Interpolant to Five Points')

 Cubic Spline Interpolation

12-75

How to Check the Output of CSAPI

These look like nice interpolants, but how do we check that csapi performs as advertised?

We already saw that csapi interpolates, because we plotted the data points and the interpolant went
right through those points. But to be sure that we get a cubic spline, it is best to start with data from
a cubic spline of the expected sort and check whether csapi reproduces that cubic spline, i.e., gives
back that cubic spline from which the data were taken.

Example: The Truncated Power Function

One simple example of a cubic spline function to check against is the truncated third power, i.e., the
function

f (x) = ((x− xi)+)3,

where xi is one of the breaks and the "+" subscript indicates the truncation function, provided by the
command subplus:

help subplus

 SUBPLUS Positive part.

 x , if x>=0
 y = subplus(x) := (x)_{+} = ,
 0 , if x<=0

12 Examples

12-76

 returns the positive part of X. Used for computing truncated powers.

The truncated 3rd power is plotted below for the particular choice xi = 2. As expected, it is zero to
the left of 2, and rises like (x-2)^3 to the right of 2.

plot(xx, subplus(xx-2).^3,'y','LineWidth',3)
axis([0,6,-10,70])

Now we interpolate this particular cubic spline at the data sites 0:6, and plot the interpolant on top of
the spline, in black.

x = 0:6;
y = subplus(x-2).^3;
values = csapi(x,y,xx);
hold on
plot(xx,values,'k',x,y,'ro')
hold off
title('Interpolant to ((x-2)_+)^3')

 Cubic Spline Interpolation

12-77

The Interpolation Error

When comparing two functions, it is usually much more informative to plot their difference.

plot(xx, values - subplus(xx-2).^3)
title('Error in Cubic Spline Interpolation to ((x-2)_+)^3')

12 Examples

12-78

To put the size of their difference into context, you can also compute the maximum data value. This
shows the error to be no worse than the inevitable round-off error.

max_y = max(abs(y))

max_y = 64

A Truncated Power That Cannot be Reproduced

As a further test, we interpolate a truncated power whose csapi-produced interpolant at the sites
0:6 cannot coincide with it. For example, the first interior break of the interpolating spline is not
really a knot since csapi uses the "not-a-knot" condition, hence the interpolant has three continuous
derivatives at that site. This implies that we should not be able to reproduce the truncated 3rd power
centered at that site since its third derivative is discontinuous across that site.

values = csapi(x,subplus(x-1).^3,xx);
plot(xx, values - subplus(xx-1).^3)
title('Error in Not-a-Knot Interpolant to ((x-1)_+)^3')

 Cubic Spline Interpolation

12-79

Since 1 is a first interior knot, it is not active for this interpolant.

The difference is as large as .18, but decays rapidly as we move away from 1. This illustrates that
cubic spline interpolation is essentially local.

Using the ppform Instead of Values

It is possible to retain the interpolating cubic spline in a form suitable for subsequent evaluation, or
for calculating its derivatives, or for other manipulations. This is done by calling csapi in the form

pp = csapi(x,y)

which returns the ppform of the interpolant. You can evaluate this form at some new points xx by the
command

values = fnval(pp,xx)

You can differentiate the interpolant by the command

dpp = fnder(pp)

or integrate it by the command

ipp = fnint(pp)

which return the ppform of the derivative or the integral, respectively.

12 Examples

12-80

Example: Differentiating and Integrating the Interpolant

To show differentiation of an interpolant, we plot the derivative of this truncated power

f2′ (x) = 3((x− 2)+)2,

(again in yellow) and then, on top of it, the derivative of our interpolant to the original truncated third
power function (again in black).

plot(xx,3*subplus(xx-2).^2,'y','LineWidth',3)
pp = csapi(x,subplus(x-2).^3);
dpp = fnder(pp);
hold on
plot(xx,fnval(dpp,xx),'k')
hold off
title('Derivative of Interpolant to ((x-2)_+)^3')

Again, the more informative comparison is to plot their difference, and as before this is no bigger
than the round-off error.

plot(xx, fnval(dpp,xx) - 3*subplus(xx-2).^2)
title('Error in Derivative of interpolant to ((x-2)_+)^3')

 Cubic Spline Interpolation

12-81

The second derivative of the truncated power is

f2′′(x) = 6(x− 2)+

A plot of the difference between this function and the second derivative of the interpolant to the
original function shows that there are now jumps, but they are still within the round-off error.

ddpp = fnder(dpp);
plot(xx, fnval(ddpp,xx) - 6*subplus(xx-2))
title('Error in Second Derivative of Interpolant to ((x-2)_+)^3')

12 Examples

12-82

The integral of the truncated power is

F2(x) = ((x− 2)+)4/4 .

A plot of the difference between this function and the integral of the interpolant to the original
function again shows that the errors are within the round-off error.

ipp = fnint(pp);
plot(xx, fnval(ipp,xx) - subplus(xx-2).^4/4)
title('Error in Integral of Interpolant to ((x-2)_+)^3')

 Cubic Spline Interpolation

12-83

The CSAPE Command

Like csapi, the csape command provides a cubic spline interpolant to given data. However, it
permits various additional end conditions. Its simplest version,

pp = csape(x,y)

uses the Lagrange end condition, which is a common alternative to the not-a-knot condition used by
csapi. csape does not directly return values of the interpolant, but only its ppform.

For example, consider again interpolation to the function

f1(x) = ((x− 1)+)3,

which csapi fails to reproduce well. We plot the error of the not-a-knot interpolant returned by
csapi (in black), along with the error of the interpolant obtained from csape (in red).

exact = subplus(xx-1).^3;
plot(xx, fnval(csapi(x,subplus(x-1).^3),xx) - exact,'k')
hold on
plot(xx, fnval(csape(x,subplus(x-1).^3),xx) - exact,'r')
title('Error in Not-a-Knot vs. Lagrange End Conditions')
legend({'Not-a-Knot' 'Lagrange'});
hold off

12 Examples

12-84

There is not much difference between the two interpolants in this case.

Other End Conditions: The 'Natural' Spline Interpolant

The csape command also provides ways to specify several other types of end conditions for an
interpolating cubic spline. For example, the command

pp = csape(x,y,'variational')

uses the so-called 'natural' end conditions. This means that the second derivative is zero at the two
extreme breaks.

This step shows how to apply 'natural' cubic spline interpolation to the function

f2(x) = ((x− 2)+)3,

and plot the error. The code below computes the 'natural' spline interpolant with an alternative
argument syntax that is equivalent to the 'variational' argument: using 'second' specifies that
csape should set the second derivative at the extreme data sites to the default value of 0.

pp = csape(x,subplus(x-2).^3,'second');
plot(xx, fnval(pp,xx) - subplus(xx-2).^3)
title('Error in ''Natural'' Spline Interpolation to ((x-2)_+)^3')

 Cubic Spline Interpolation

12-85

Note the large error near the right end. This is due to the fact that the 'natural' end conditions
implicitly insist on having a zero second derivative there.

Other End Conditions: Prescribing Second Derivatives

We can also explicitly use the correct second derivatives to get a small error. First, we compute the
correct second derivative values of the truncated power at the endpoints.

endcond = 6*subplus(x([1 end])-2);

Then we create the interpolant, specifying that second derivatives at the endpoints are to be matched
to the second derivative values we just computed. We do this by providing endcond(1) for the left
endpoint condition, and endcond(2) for the right, along with the data values.

pp = csape(x,[endcond(1) subplus(x-2).^3 endcond(2)], 'second');
plot(xx, fnval(pp,xx) - subplus(xx-2).^3,'r')
title(['Error in Spline Interpolation to ((x-1)_+)^3'; ...
 ' When Matching the 2nd Derivative at Ends '])

12 Examples

12-86

Other End Conditions: Prescribing Slopes

csape also permits specification of endpoint slopes. This is the clamped (or, complete) cubic spline
interpolant. The statement

pp = csape(x,[sl,y,sr],'clamped')

creates the cubic spline interpolant to the data (x, y) that also has slope sl at the leftmost data site
and slope sr at the rightmost data site.

Other End Conditions: Mixed End Conditions

It is even possible to mix these conditions. For example, our much-exercised truncated power
function

f1(x) = ((x− 1)+)3

has slope 0 at x=0 and second derivative 30 at x=6 (the last data site).

Therefore, by matching the slope at the left end and the curvature at the right, we expect no error in
the resulting interpolant.

pp = csape(x, [0 subplus(x-1).^3 30], [1 2]);
plot(xx, fnval(pp,xx) - subplus(xx-1).^3)
title(['Error in Spline Interpolation to ((x-1)_+)^3'; ...
 ' with Mixed End Conditions. '])

 Cubic Spline Interpolation

12-87

Other End Conditions: Periodic Conditions

It is also possible to prescribe periodic end conditions. For example, the sine function is 2*pi-periodic
and has the values [0 -1 0 1 0] at the sites (pi/2)*(-2:2). The difference, between the sine
function and its periodic cubic spline interpolant at these sites, is only 2 percent. Not bad.

x = (pi/2)*(-2:2);
y = [0 -1 0 1 0];
pp = csape(x,y, 'periodic');
xx = linspace(-pi,pi,201);
plot(xx, sin(xx) - fnval(pp,xx), 'x')
title('Error in Periodic Cubic Spline Interpolation to sin(x)')

12 Examples

12-88

End Conditions Not Explicitly Covered by CSAPI or CSAPE

Any end condition not covered explicitly by csapi or csape can be handled by constructing the
interpolant with the csape default side conditions, and then adding to it an appropriate scalar
multiple of an interpolant to zero values and some side conditions. If there are two `nonstandard' side
conditions to be satisfied, you may have to solve a 2-by-2 linear system first.

For example, suppose that you want to compute the cubic spline interpolant s to the data

x = 0:.25:3;
q = @(x) x.*(-1 + x.*(-1+x.*x/5));
y = q(x);

and enforce the condition

lambda(s) := a * (Ds)(e) + b * (D^2 s)(e) = c

on the first and second derivatives of s at the point e.

The data were generated from a quartic polynomial that happens to satisfy this side condition with
specific parameters

e = x(1);
a = 2; b = -3; c = 4;

To construct the interpolant that satisfies this specific condition, we first construct the interpolant
with the default end conditions

 Cubic Spline Interpolation

12-89

pp1 = csape(x,y);

and the first derivative of its first polynomial piece.

dp1 = fnder(fnbrk(pp1,1));

In addition, we construct the cubic spline interpolant to zero data values, specifying that it have a
slope of 1 at e,

pp0 = csape(x,[1,zeros(size(y)),0], [1,0]);

as well as constructing the first derivative of its first polynomial piece.

dp0 = fnder(fnbrk(pp0,1));

Then we compute lambda for both pp1 and pp0,

lam1 = a*fnval(dp1,e) + b*fnval(fnder(dp1),e);
lam0 = a*fnval(dp0,e) + b*fnval(fnder(dp0),e);

and construct the correct linear combination of pp1 and pp0 to get a cubic spline

s := pp1 + ((c - lambda(pp1))/lambda(pp0)) * pp0

that does satisfy the desired condition, as well as the default end condition at the right endpoint. We
form this linear combination with the help of fncmb.

s = fncmb(pp0,(c-lam1)/lam0,pp1);

A plot of the interpolation error shows that s fits the quartic polynomial slightly better near e than
the interpolant pp1 with the default conditions does.

xx = (-.3):.05:.7; yy = q(xx);
plot(xx, fnval(pp1,xx) - yy, 'x')
hold on
plot(xx, fnval(s,xx) - yy, 'o')
hold off
legend({'Default conditions' 'Nonstandard conditions'},'location','SE')

12 Examples

12-90

If we want to enforce the condition

mu(s) := (D^3 s)(3) = 14.6

on the third derivative of the interpolant (the quartic satisfies this condition), then we construct an
additional cubic spline interpolating to zero values, and with zero first derivative at the left endpoint,
hence certain to be independent from pp0.

pp2 = csape(x,[0,zeros(size(y)),1],[0,1]);

Then we find the coefficients d0 and d2 in the linear combination

s := pp1 + d0*pp0 + d2*pp2

that solves the linear system

lambda(s) = c

mu(s) = 14.6

Note that both pp0 and pp2 vanish at all interpolation sites, hence s will match the given data for any
choice of d0 and d2.

For amusement, we use the MATLAB® encoding facility to write a loop to compute lambda(pp_j)
and mu(pp_j), for j=0:2.

dd = zeros(2,3);
for j=0:2

 Cubic Spline Interpolation

12-91

 J = num2str(j);
 eval(['dpp',J,'=fnder(pp',J,');']);
 eval(['ddpp',J,'=fnder(dpp',J,');']);
 eval(['dd(1,1+',J,')=a*fnval(dpp',J,',e)+b*fnval(ddpp',J,',e);']);
 eval(['dd(2,1+',J,')=fnval(fnder(ddpp',J,'),3);']);
end

Given the values of lambda and mu for pp0, pp1, and pp2, we then solve for the coefficients that
define the correct linear combination.

d = dd(:,[1,3])\([c;14.6]-dd(:,2));
s = fncmb(fncmb(pp0,d(1),pp2,d(2)),pp1);

xxx = 0:.05:3;
yyy = q(xxx);
plot(xxx, yyy - fnval(s,xxx),'x')
title('Error in Spline Interpolant to y = x*(-1 + x*(-1+x*x/5))')

For reassurance, we compare this error with the one obtained in complete cubic spline interpolation
to this function:

hold on
plot(xxx, yyy - fnval(csape(x,[-1,y,-7+(4/5)*27],'clamped'),xxx),'o')
hold off
legend({'Nonstandard conditions' 'Endslope conditions'})

12 Examples

12-92

The errors differ (and not by much) only near the end points, testifying to the fact that both pp0 and
pp2 are sizable only near their respective end points.

As a final check, we verify that s satisfies the desired third derivative condition at 3.

fnval(fnder(s,3),3)

ans = 14.6000

 Cubic Spline Interpolation

12-93

Cubic Smoothing Splines

This example shows how to use the csaps and spaps commands from Curve Fitting Toolbox™ to
construct cubic smoothing splines.

The CSAPS Command

The command csaps provides the smoothing spline. This is a cubic spline that more or less follows
the presumed underlying trend in noisy data. A smoothing parameter, to be chosen by you,
determines just how closely the smoothing spline follows the given data. Here is the basic
information, an abbreviated version of the documentation:

CSAPS Cubic smoothing spline.

VALUES = CSAPS(X, Y, P, XX)

Returns the values at XX of the cubic smoothing spline for the

given data (X,Y) and depending on the smoothing parameter P, chosen

from the interval [0 .. 1]. This smoothing spline f minimizes

P * sum_i W(i)(Y(i) - f(X(i)))^2 + (1-P) * integral (D^2 f)^2

Example: Noisy Data From a Cubic Polynomial

Here are some trial runs. We start with data from a simple cubic, q(x) := x^3, contaminate the
values with some noise, and choose the value of the smoothing parameter to be .5. Then plot the
resulting smoothed values, along with the underlying cubic, and the contaminated data.

xi = (0:.05:1);
q = @(x) x.^3;
yi = q(xi);
randomStream = RandStream.create('mcg16807', 'Seed', 23);
ybad = yi+.3*(rand(randomStream, size(xi))-.5);
p = .5;
xxi = (0:100)/100;
ys = csaps(xi,ybad,p,xxi);
plot(xi,yi,':',xi,ybad,'x',xxi,ys,'r-')
title('Clean Data, Noisy Data, Smoothed Values')
legend('Exact', 'Noisy', 'Smoothed', 'Location', 'NorthWest')

12 Examples

12-94

The smoothing is way overdone here. By choosing the smoothing parameter p closer to 1, we obtain a
smoothing spline closer to the given data. We try p = .6, .7, .8, .9, 1, and plot the resulting
smoothing splines.

yy = zeros(5,length(xxi));
p = [.6 .7 .8 .9 1];
for j=1:5
 yy(j,:) = csaps(xi,ybad,p(j),xxi);
end
hold on
plot(xxi,yy);
hold off
title('Smoothing Splines for Various Values of the Smoothing Parameter')
legend({'Exact','Noisy','p = 0.5','p = 0.6','p = 0.7','p = 0.8', ...
 'p = 0.9', 'p = 1.0'}, 'Location', 'NorthWest')

 Cubic Smoothing Splines

12-95

We see that the smoothing spline can be very sensitive to the choice of the smoothing parameter.
Even for p = 0.9, the smoothing spline is still far from the underlying trend, while for p = 1, we get
the interpolant to the (noisy) data.

In fact, the formulation used by csapi (p.235ff of A Practical Guide to Splines) is very sensitive to
scaling of the independent variable. A simple analysis of the equations used shows that the sensitive
range for p is around 1/(1+epsilon), with epsilon := h^3/16, and h the average difference
between neighboring sites. Specifically, you would expect a close following of the data when p = 1/
(1+epsilon/100) and some satisfactory smoothing when p = 1/(1+epsilon*100).

The plot below shows the smoothing spline for values of p near this magic number 1/(1+epsilon).
For this case, it is more informative to look at 1-p since the magic number, 1/(1+epsilon), is very
close to 1.

epsilon = ((xi(end)-xi(1))/(numel(xi)-1))^3/16;
1 - 1/(1+epsilon)

ans = 7.8124e-06

plot(xi,yi,':',xi,ybad,'x')
hold on
labels = cell(1,5);
for j=1:5
 p = 1/(1+epsilon*10^(j-3));
 yy(j,:) = csaps(xi,ybad,p,xxi);
 labels{j} = ['1-p= ',num2str(1-p)];
end

12 Examples

12-96

plot(xxi,yy)
title('Smoothing Splines for Smoothing Parameter Near Its ''Magic'' Value')
legend([{'Exact', 'Noisy'}, labels], 'Location', 'NorthWest')
hold off

In this example, the smoothing spline is very sensitive to variation of the smoothing parameter near
the magic number. The one farthest from 1 seems the best choice from these, but you may prefer the
one beyond that.

p = 1/(1+epsilon*10^3);
yy = csaps(xi,ybad,p,xxi);
hold on
plot(xxi, yy, 'y', 'LineWidth', 2)
title(sprintf('The Smoothing Spline For 1-p = %s is Added, in Yellow', num2str(1-p)))
hold off

 Cubic Smoothing Splines

12-97

You can also supply csaps with error weights, to pay more attention to some data points than others.
Also, if you do not supply the evaluation sites xx, then csaps returns the ppform of the smoothing
spline.

Finally, csaps can also handle vector-valued data and even multivariate, gridded data.

The SPAPS Command

The cubic smoothing spline provided by the command spaps differs from the one constructed in
csaps only in the way it is selected. Here is an abbreviated version of the documentation for spaps:

SPAPS Smoothing spline.

[SP,VALUES] = SPAPS(X,Y,TOL) returns the B-form and, if asked,

the values at X, of a cubic smoothing spline f for the given

data (X(i),Y(:,i)), i=1,2, ..., n.

The smoothing spline f minimizes the roughness measure

F(D^2 f) := integral (D^2 f(t))^2 dt on X(1) < t < X(n)

over all functions f for which the error measure

E(f) := sum_j { W(j)*(Y(:,j) - f(X(j)))^2 : j=1,...,n }

12 Examples

12-98

is no bigger than the given TOL. Here, D^M f denotes the M-th

derivative of f. The weights W are chosen so that E(f) is the

Composite Trapezoid Rule approximation for F(y-f).

f is constructed as the unique minimizer of

rho*E(f) + F(D^2 f),

with the smoothing parameter RHO so chosen so that E(f) equals

TOL. Hence, FN2FM(SP,'pp') should be (up to roundoff) the same

as the output from CPAPS(X,Y,RHO/(1+RHO)).

Tolerance vs. Smoothing Parameter

It may be easier to supply a suitable tolerance for spaps than the smoothing parameter p required by
csaps. In our earlier example, we added uniformly-distributed random noise from the interval
0.3*[-0.5 .. 0.5]. Hence, we can estimate a reasonable value for tol as the value of the error
measure e at such noise.

tol = sum((.3*(rand(randomStream, size(yi))-.5)).^2);

This plot shows the resulting smoothing spline constructed by spaps. Note that the error weights are
specified to be uniform, which is their default value in csaps.

[sp,ys,rho] = spaps(xi,ybad,tol,ones(size(xi)));
plot(xi,yi,':',xi,ybad,'x',xi,ys,'r-')
title(sprintf('Clean Data, Noisy Data, Smoothed Values (1-p = %s)', num2str(1/(1+rho))));
legend({'Exact','Noisy','Smoothed'}, 'location', 'NorthWest')

 Cubic Smoothing Splines

12-99

The figure title shows the value of p you would use in csaps to obtain exactly this smoothing spline
for these data.

Here, in addition, is the smoothing spline provided by csaps when not given a smoothing parameter.
In this case csaps chooses the parameter by a certain ad hoc procedure that attempts to locate the
region where the smoothing spline is most sensitive to the smoothing parameter (similar to the
earlier discussion).

hold on
plot(xxi,fnval(csaps(xi,ybad),xxi),'-')
title('Clean Data, Noisy Data, Smoothed Values')
legend({'Exact' 'Noisy' 'spaps, specified tolerance' ...
 'csaps, default smoothing parameter'}, 'Location', 'NorthWest')
hold off

12 Examples

12-100

CSAPS vs. SPAPS

The csaps and spaps commands differ in the way in which you specify a particular smoothing spline,
via a smoothing parameter vs. a tolerance. Another difference is that spaps can provide a linear or a
quintic smoothing spline, in addition to the cubic smoothing spline.

The quintic smoothing spline is better than the cubic smoothing spline in the situation when you
would like the second derivative to move as little as possible.

 Cubic Smoothing Splines

12-101

Fitting a Spline to Titanium Test Data

This example shows how to use commands from Curve Fitting Toolbox™ to fit a spline to titanium test
data with manual and automatic selection of knots.

Manual Knot Choice for Spline Interpolation

Here are some data that record a certain property of titanium, measured as a function of
temperature. We'll use it to illustrate some issues with spline interpolation.

[xx,yy] = titanium;

A plot of the data shows a rather sharp peak.

plot(xx,yy,'bx');
frame = [-10 10 -.1 .3]+[min(xx),max(xx),min(yy),max(yy)];
axis(frame);

We pick a few data points from these somewhat rough data, since we want to interpolate. Here is a
picture of the data, with the selected data points marked.

pick = [1 5 11 21 27 29 31 33 35 40 45 49];
tau = xx(pick);
y = yy(pick);
hold on

12 Examples

12-102

plot(tau,y,'ro');
hold off

Since a spline of order k with n+k knots has n degrees of freedom, and we have 12 data points, a fit
with a fourth order spline requires 12+4 = 16 knots. Moreover, this knot sequence t must be such
that the i-th data site lies in the support of the i-th B-spline. We achieve this by using the data sites as
knots, but add two simple knots at either end.

dl = tau(2) - tau(1);
dr = tau(end) - tau(end-1);
t = [tau(1)-dl*[2 1] tau tau(end)+dr*[1 2]]; % construct the knot sequence
plot(tau,y,'ro');
hold on
axis(frame+[-2*dl 2*dr 0 0])
plot(t,repmat(frame(3)+.03,size(t)),'kx')
hold off
legend({'Data Values' 'Knots'},'location','NW')

 Fitting a Spline to Titanium Test Data

12-103

We use this knot sequence to construct an interpolating cubic spline.

sp = spapi(t,tau,y);

Now, for the plot. Since we do not care about the part of the spline outside the data interval, we
restrict the plot to that interval.

plot(tau,y,'ro')
axis(frame)
hold on
fnplt(sp,[tau(1) tau(end)], 'k')
hold off

12 Examples

12-104

A closer look at the left part of the spline fit shows some undulations.

xxx = linspace(tau(1),tau(5),41);
plot(xxx, fnval(sp, xxx), 'k', tau, y, 'ro');
axis([tau(1) tau(5) 0.6 1.2]);

 Fitting a Spline to Titanium Test Data

12-105

The unreasonable bump in the first interval stems from the fact that our spline goes smoothly to zero
at its first knot. To see that, here is a picture of the entire spline, along with its knot sequence and the
data points.

fnplt(sp,'k');
hold on
plot(tau,y,'ro', t,repmat(.1,size(t)),'kx');
hold off
legend({'Spline Interpolant' 'Data Values' 'Knots'},'location','NW')

12 Examples

12-106

Here is a simple way to enforce a more reasonable boundary behavior. We add two more data points
outside the given data interval and choose as our data there the values of the straight line through
the first two data points.

tt = [tau(1)-[4 3 2 1]*dl tau tau(end)+[1 2 3 4]*dr];
xx = [tau(1)-[2 1]*dl tau tau(end)+[1 2]*dr];
yy = [y(1)-[2 1]*(y(2)-y(1)) y y(end)+[1 2]*(y(end)-y(end-1))];
sp2 = spapi(tt,xx,yy);
plot(tau,y,'ro', xx([1 2 end-1 end]),yy([1 2 end-1 end]),'bo');
axis(frame+[-2*dl 2*dr 0 0]);
hold on
fnplt(sp2,'b',tau([1 end]))
hold off
legend({'Original Data' 'Data Added for End Conditions' ...
 'Fit with Added Data'},'location','NW')

 Fitting a Spline to Titanium Test Data

12-107

Here is a comparison of the two spline fits, to show the reduction of the undulation in the first and
last interval.

hold on
fnplt(sp,'k',tau([1 end]))
hold off
legend({'Original Data' 'Data Added for End Conditions' ...
 'Fit with Added Data' 'Original Fit'},'location','NW')

12 Examples

12-108

Finally, here is a closer look at the first four data intervals that shows more clearly the reduction of
the undulation near the left end.

plot(tau,y,'ro',xxx,fnval(sp2,xxx),'b',xxx,fnval(sp,xxx),'k');
axis([tau(1) tau(5) .6 1.2]);
legend({'Original Data' 'Fit with Added Data' ...
 'Original Fit'},'location','NW')

 Fitting a Spline to Titanium Test Data

12-109

Automatic Knot Choice for Interpolation

If all this detail turns you off, let Curve Fitting Toolbox choose the knots for you. Specify the desired
order of the interpolant as the first input argument to the spline interpolation command spapi,
rather than a knot sequence.

autosp = spapi(4, tau, y);
knots = fnbrk(autosp,'knots');
plot(tau, y, 'ro')
hold on
fnplt(autosp,'g')
plot(knots, repmat(.5,size(knots)),'gx')
hold off
legend({'Data Values' 'Fit With Knots Chosen by SPAPI' ...
 'Knots Chosen by SPAPI'}, 'location','NW')

12 Examples

12-110

Below is the result of a much better knot choice, obtained by shifting the knot at 842 slightly to the
right and the knot at 985 slightly to the left.

knots([7 12]) = [851, 971];
adjsp = spapi(knots, tau, y);
hold on
fnplt(adjsp,'r',2)
plot(knots, repmat(.54,size(knots)),'rx')
hold off
legend({'Data Values' 'Fit With Knots Chosen by SPAPI' ...
 'Knots Chosen by SPAPI' 'Fit With Knots Adjusted' ...
 'Adjusted Knots'}, 'location','NW')

 Fitting a Spline to Titanium Test Data

12-111

Or else, simply try the standard cubic spline interpolant, supplied by csapi. This amounts to a
slightly different choice of knots.

autocs = csapi(tau, y);
plot(tau, y, 'ro')
hold on
fnplt(autocs,'c')
hold off

12 Examples

12-112

With such rapidly-varying data, it is hard to get agreement among all reasonable interpolants, even if
each of them is a cubic spline. The plot below shows all five interpolants, for comparison.

plot(tau, y, 'ro')
hold on
fnplt(sp,'k',tau([1 end])) % black: original
fnplt(sp2,'b',tau([1 end])) % blue: with special end conditions
fnplt(autosp,'g') % green: automatic knot choice by SPAPI
fnplt(autocs,'c') % cyan: automatic knot choice by CSAPI
fnplt(adjsp,'r',2) % red: knot choice by SPAPI slightly changed
hold off
legend({'Data Values' 'Original Fit' 'Special End Conditions' ...
 'With Knots Chosen by SPAPI' 'With Knots Chosen by CSAPI' ...
 'With Adjusted Knots'},'location','NW')

 Fitting a Spline to Titanium Test Data

12-113

12 Examples

12-114

Splines in the Plane

This example shows how to use the spmak, spcrv, cscvn and rscvn commands from Curve Fitting
Toolbox™ to construct spline curves in the plane. This includes plotting tangents and computing the
area enclosed by a curve.

A Simple Spline Curve

Curve Fitting Toolbox can handle vector-valued splines. A d-vector-valued univariate spline provides a
curve in d-space. In this mode, d = 2 is most common, as it gives plane curves.

Here is an example, in which a spline with 2-dimensional coefficients is constructed and plotted.

knots = [1,1:9,9];
curve = spmak(knots, repmat([0 0; 1 0; 1 1; 0 1], 2,1).');

t = linspace(2,8,121);
values = fnval(curve,t);
plot(values(1,:),values(2,:),'LineWidth',2);
axis([-.4 1.4 -.2 1.2]), axis equal
title('A Spline Curve');
hold on

 Splines in the Plane

12-115

A Word of Caution

You may have noticed that this example did not use fnplt to plot the curve, but instead plotted some
points on the curve obtained by fnval. Here is the code again:

 t = linspace(2,8,121);
 values = fnval(curve,t);
 plot(values(1,:),values(2,:),'LineWidth',2)

Using fnplt directly with this particular spline curve gives the red curve in the figure below.

fnplt(curve,'r',.5);
title('The Full Spline Curve, in Red')

The explanation?

The spline is of order 4, yet the end knots in the knot sequence

knots

knots =

 1 1 2 3 4 5 6 7 8 9 9

only have multiplicity 2. Therefore, all the B-splines of order 4 for this knot sequence are 0 at the
endpoints of the basic interval. This makes the curve start and stop at (0,0).

12 Examples

12-116

A Remedy

Since, in this case, we are really interested only in the curve segment corresponding to the parameter
interval [3 .. 7], we can use fnbrk to extract that part, and then have no difficulty plotting it, in
yellow, with fnplt.

mycv = fnbrk(curve,[3 7]);
fnplt(mycv,'y',2.5);
title('The Spline Curve of Interest, in Yellow')

The Area Enclosed By This Curve

Since you now have a spline, namely mycv, that describes the curve (and nothing else), you can easily
compute the area enclosed by this closed curve, as follows.

area = diff(fnval(fnint(...
 fncmb(fncmb(mycv,[0 1]),'*',fnder(fncmb(mycv,[1 0]))) ...
),fnbrk(mycv,'interval')))

area =

 -0.8333

With a little effort, you can recognize this as the value of the integral

 int y(t) d(x(t)) = int y(t) Dx(t) dt

 Splines in the Plane

12-117

over the basic interval of the spline mycv, with (x(t),y(t)) := fnval(mycv,t) the point on the
curve corresponding to the parameter value t. Here, fncmb(mycv,[1,0]), fncmb(mycv,[0,1])
describe the two components of the spline curve, i.e., the scalar-valued splines x and y.

Also, the curve is roughly a circle with radius 1/2. Hence, you would expect an area of, roughly,

disp(pi/4)

 0.7854

But why is the computed area negative? Because the area enclosed by the curve lies to the left as one
travels on the curve with increasing t. To verify this, we draw some tangent vectors.

Add Some Tangent Vectors

We redraw the curve and also draw the tangent vector to the curve at some points.

hold off
fnplt(mycv,'y',2.5); hold on
t = 3:.4:6.2;
cv = fnval(curve, t);
cdv = fnval(fnder(curve), t);
quiver(cv(1,:),cv(2,:), cdv(1,:),cdv(2,:));
title('A Spline Curve With Some Tangents')
axis([-.4 1.4 -.2 1.2]), axis equal

12 Examples

12-118

The Intersection of the Curve With a Straight Line

If you wanted to determine the points of intersection of this spline curve with the straight line y = x,
the following code would give them to you, and plot the segment of that straight line inside the curve:

cuts = fnval(mycv, ...
 mean(fnzeros(fncmb(fncmb(mycv,[0,1]),'-',fncmb(mycv,[1,0])))));
plot(cuts(1,:), cuts(2,:),'y','LineWidth',2.5)
hold off
title('A Spline Curve With Some Tangents and a Cut Across')

SPCRV: The Control Polygon and the Corresponding Spline Curve

Spline curves are used extensively in the generation of illustrations in which nothing more than a
smooth curve of a certain roughly imagined shape is required. For this, Curve Fitting Toolbox
contains a special command, spcrv, which can be used independently of the rest of the toolbox.

Given a sequence of points in the plane and, optionally, an order k, spcrv generates, by repeated
midpoint knot insertion, the spline curve of order k whose control polygon is specified by the given
sequence.

The figure below shows such a control polygon, and the corresponding spline curve of order 3.

points = [0 0; 1 0; 1 1; 0 2; -1 1; -1 0; 0 -1; 0 -2].';
values = spcrv(points,3);

plot(points(1,:),points(2,:),'k');

 Splines in the Plane

12-119

axis([-2 2.25 -2.1 2.2]);
hold on
plot(values(1,:),values(2,:),'r','LineWidth',1.5);
legend({'Control Polygon' 'Quadratic Spline Curve'}, 'location','SE');

Notice that the curve touches each segment of the control polygon at its midpoint, and follows the
shape outlined by the control polygon.

Raising the Order

Raising the order k will pull the curve away from the control polygon and make it smoother, but also
shorter. Here, we have added the corresponding spline curve of order 4.

value4 = spcrv(points,4);
plot(value4(1,:),value4(2,:),'b','LineWidth',2);
legend({'Control Polygon' 'Quadratic Spline Curve' ...
 'Cubic Spline Curve'}, 'location','SE');

12 Examples

12-120

CSCVN

On the other hand, to obtain an interpolating curve, you could use the cscvn command, which
provides a parametric `natural' cubic spline curve.

fnplt(cscvn(points), 'g',1.5);
legend({'Control Polygon' 'Quadratic Spline Curve' ...
 'Cubic Spline Curve' 'Interpolating Spline Curve'}, ...
 'location','SE');

 Splines in the Plane

12-121

By adding the point (.95,-.05) near the second control point, (1,0), we can create an interpolating
spline curve that turns faster there.

np = size(points, 2);
fnplt(cscvn([points(:,1) [.95; -.05] points(:,2:np)]), 'm',1.5);
plot(.95,-.05,'*');
legend({'Control Polygon' 'Quadratic Spline Curve' ...
 'Cubic Spline Curve' 'Interpolating Spline Curve' ...
 'Faster Turning Near (1,0)'}, ...
 'location','SE');
hold off

12 Examples

12-122

RSCVN

You can also obtain a tangent-continuous curve composed of circular arcs that passes through a given
sequence of points in the plane and, optionally, is orthogonal to given normal directions at the points.
The command rscvn provides such a curve.

For example, the following generates a circle

c = rscvn([-1 1 -1;0 0 0],[1 1;0 0]);

as its plot shows.

fnplt(c);
axis([-1.05 1.05 -1.05 1.05]), axis equal, axis off

 Splines in the Plane

12-123

c is a quadratic rational spline consisting of just two pieces, as the following commands make clear.

[form, order, breaks] = fnbrk(c,'f','o','b')

form =

 'rBform'

order =

 3

breaks =

 0 2 4

It is easy to generate striking patterns with this tool using just a few data points. For example, here is
a version of the design on the Bronze Triskele Medallion in the Ulster Museum in Belfast, supposedly
done by pieces of circular arcs a long time ago.

pp =[zeros(1,7); 5.4, 3, 6.9, 2.75, 2.5, .5, 5];
alpha = 2*pi/3; ca = cos(alpha); sa = sin(alpha); c = [ca sa;-sa ca];
d = [0 0 .05 -.05;1 -1 .98 .98]; d = [d c*d];
yin = rscvn([pp(:,[7,1:3]),c*pp(:,3:4),pp(:,3)], d(:,[1 2 1 4 7 5 1]));

12 Examples

12-124

fnplt(yin), hold on, fnplt(fncmb(yin,c)), fnplt(fncmb(yin,c'))
yang = rscvn([pp(:,6),-pp(:,6),pp(:,5),c*pp(:,4)],[d(:,[2 1 1]),c(:,2)]);
fnplt(yang), fnplt(fncmb(yang,c)), fnplt(fncmb(yang,c'))
axis([-7.2 7.2 -7.2 7.2]), axis equal, axis off, hold off

 Splines in the Plane

12-125

Constructing Spline Curves in 2D and 3D

This example shows how to use the cscvn command from Curve Fitting Toolbox™ to construct cubic
spline curves in two and three dimensions.

Selecting the Points

This example will show how to draw a smooth curve through a list of points, in the order in which
they occur. First, we select some random points in the plane, and store them in a matrix, one point
per column.

npts = 10;
xy = [randn(1,npts); randn(1,npts)];
plot(xy(1,:),xy(2,:),'ro','LineWidth',2);
text(xy(1,:), xy(2,:),[repmat(' ',npts,1), num2str((1:npts)')])
ax = gca;
ax.XTick = [];
ax.YTick = [];

Connecting the Points

Next, construct the curve using the cscvn command and plot it using fnplt.

hold on
fnplt(cscvn(xy),'r',2)
hold off

12 Examples

12-126

You could also use the getcurve command if you wanted to input the list of points interactively.

3-D Spline Curves

It's just as easy to create spline curves in three dimensions. This time, we'll do something less
random. First, we generate the points.

npts = 13;
t = linspace(0,8*pi,npts);
z = linspace(-1,1,npts);
omz = sqrt(1-z.^2);
xyz = [cos(t).*omz; sin(t).*omz; z];
plot3(xyz(1,:),xyz(2,:),xyz(3,:),'ro','LineWidth',2);
text(xyz(1,:),xyz(2,:),xyz(3,:),[repmat(' ',npts,1), num2str((1:npts)')])
ax = gca;
ax.XTick = [];
ax.YTick = [];
ax.ZTick = [];
box on

 Constructing Spline Curves in 2D and 3D

12-127

Connecting the Points

Here is the 3D spline curve through these points provided by cscvn. By appending the first point to
the end of the list, we get a smooth closed curve.

hold on
fnplt(cscvn(xyz(:,[1:end 1])),'r',2)
hold off

12 Examples

12-128

 Constructing Spline Curves in 2D and 3D

12-129

Smoothing a Histogram

This example shows how to use spline commands from Curve Fitting Toolbox™ to smooth a
histogram.

Here is a histogram of some random values that might represent data that were collected on some
measurement.

y = randn(1,5001);
hist(y);

We would like to derive from this histogram a smoother approximation to the underlying distribution.
We do this by constructing a spline function f whose average value over each bar interval equals the
height of that bar.

If h is the height of one of these bars, and its left and right edges are at L and R, then we want the
spline f to satisfy

integral {f(x) : L < x < R}/(R - L) = h,

or, with F the indefinite integral of f, i.e., DF = f,

F(R) - F(L) = h*(R - L).

[heights,centers] = hist(y);
hold on

12 Examples

12-130

ax = gca;
ax.XTickLabel = [];
n = length(centers);
w = centers(2)-centers(1);
t = linspace(centers(1)-w/2,centers(end)+w/2,n+1);
p = fix(n/2);
fill(t([p p p+1 p+1]),[0 heights([p p]),0],'w')
plot(centers([p p]),[0 heights(p)],'r:')
h = text(centers(p)-.2,heights(p)/2,' h');
dep = -70;
tL = text(t(p),dep,'L');
tR = text(t(p+1),dep,'R');
hold off

So, with n the number of bars, t(i) the left edge of the i-th bar, dt(i) its width, and h(i) its
height, we want

F(t(i+1)) - F(t(i)) = h(i) * dt(i), for i = 1:n,

or, setting arbitrarily F(t(1)) = 0,

F(t(i)) = sum {h(j)*dt(j) : j=1:i-1}, for i = 1:n+1.

dt = diff(t);
Fvals = cumsum([0,heights.*dt]);

Add to this the two end conditions DF(t(1)) = 0 = DF(t(n+1)), and we have all the data we
need to get F as a complete cubic spline interpolant.

 Smoothing a Histogram

12-131

F = spline(t, [0, Fvals, 0]);

The two extra zero values in the second argument indicate the zero endslope conditions.

Finally, the derivative, f = DF, of the spline F is the smoothed version of the histogram.

DF = fnder(F); % computes its first derivative
h.String = 'h(i)';
tL.String = 't(i)';
tR.String = 't(i+1)';
hold on
fnplt(DF, 'r', 2)
hold off
ylims = ylim;
ylim([0,ylims(2)]);

12 Examples

12-132

Bivariate Tensor Product Splines

This example shows how to use the spline commands in Curve Fitting Toolbox™ to fit tensor product
splines to bivariate gridded data.

Introduction

Since Curve Fitting Toolbox can handle splines with vector coefficients, it is easy to implement
interpolation or approximation to gridded data by tensor product splines. Most spline construction
commands in the toolbox take advantage of this.

However, you might be interested in seeing a detailed description of how approximation to gridded
data by tensor products is actually done for bivariate data. This will also come in handy when you
need some tensor product construction not provided by the commands in the toolbox.

Example: Least-Squares Approximation to Gridded Data

Consider, for example, least-squares approximation to given data

z(i,j) = f(x(i),y(j)) for i = 1:I, j = 1:J.

Here are some gridded data, taken from Franke's sample function. Note that the grid is somewhat
denser near the boundary, to help pin down the approximation there.

x = sort([(0:10)/10,.03 .07, .93 .97]);
y = sort([(0:6)/6,.03 .07, .93 .97]);
[xx,yy] = ndgrid(x,y); % note: ndgrid rather than meshgrid
z = franke(xx,yy);

mesh(x,y,z.');
xlabel('x'); ylabel('y');
view(150,50);
title('Data from the Franke Function');

 Bivariate Tensor Product Splines

12-133

A note about NDGRID vs. MESHGRID

Note that the statements

[xx,yy] = ndgrid(x,y);

z = franke(xx,yy);

used above make certain that z(i,j) is the value of the function being approximated at the grid
point (x(i),y(j)).

However, the MATLAB® command mesh(x,y,z) expects z(j,i) (note the reversed order of i and
j) as the value at the grid point (x(i),y(j)). For that reason, the above plot was generated by the
statement

mesh(x,y,z.');

i.e., using the transpose of the matrix z.

Such transposing would not have been necessary had we used meshgrid instead of ndgrid. But the
resulting z would not have followed approximation theory standards.

Choice of Spline Space in the Y-Direction

Next, we choose a spline order ky and a knot sequence knotsy for the y-direction

12 Examples

12-134

ky = 3;
knotsy = augknt([0,.25,.5,.75,1],ky);

and then obtain

sp = spap2(knotsy,ky,y,z);

a spline curve whose i-th component is an approximation to the curve (y,z(i,:)) for i=1:I.

Evaluation

In particular,

yy = -.1:.05:1.1;
vals = fnval(sp,yy);

creates the matrix vals whose (i,j)-th element can be taken as an approximation to the value
f(x(i),yy(j)) of the underlying function f at the grid point (x(i),yy(j)). This is evident when
we plot vals.

mesh(x,yy,vals.');
xlabel('x'); ylabel('y');
view(150,50);
title('Simultaneous Approximation to All Curves in the Y-Direction');

Note that, for each x(i), both the first two and the last two values are zero since both the first two
and the last two sites in yy are outside the basic interval for the spline sp.

 Bivariate Tensor Product Splines

12-135

Also note the "ridges" that run along the y-direction, most noticeable near the peaks of the surface.
They confirm that we are plotting smooth curves in one direction only.

From Curves to a Surface; Choosing a Spline Space in the X-Direction

To get an actual surface, we now have to go one step further. Consider the coefficients coefsy of the
spline sp, as obtained by

coefsy = fnbrk(sp,'c');

Abstractly, you can think of the spline sp as the vector-valued function

y |--> sum coefsy(:,r) B_{r,ky}(y)

r

with the i-th element, coefsy(i,r), of the vector coefficient coefsy(:,r) corresponding to x(i)
for i=1:I. This suggests approximating each curve (x,coefsy(:,r)) by a spline, using the same
order kx and the same appropriate knot sequence knotsx for every r.

kx = 4;
knotsx = augknt(0:.2:1,kx);
sp2 = spap2(knotsx,kx,x,coefsy.');

The use of the spap2 command here needs, perhaps, an explanation.

Recall that spap2(knots,k,x,fx) treats fx(:,j) as the value at x(j), i.e., takes each column of
fx as a data value. Since we wanted to fit the value coefsy(i,:) at x(i), for all i, we have to
provide spap2 with the transpose of coefsy.

Now consider the transpose of the coefficient matrix of the resulting spline "curve" sp2, obtained as

coefs = fnbrk(sp2,'c').';

coefs provides the bivariate spline approximation

(x,y) |--> sum sum coefs(q,r) B_{q,kx}(x) B_{r,ky}(y)

q r

to the original data

(x(i),y(j)) |--> f(x(i),y(j)) = z(i,j).

We use spcol to provide the values B_{q,kx}(xv(i)) and B_{r,ky}(yv(j)) needed to evaluate
this spline surface at some grid points (xv(i),yv(j)) and then plot the values.

xv = 0:.025:1; yv = 0:.025:1;
values = spcol(knotsx,kx,xv)*coefs*spcol(knotsy,ky,yv).';
mesh(xv,yv,values.');
xlabel('x'); ylabel('y');
view(150,50);
title('The Spline Approximant');

12 Examples

12-136

Why Does This Evaluation Work?

The statement

values = spcol(knotsx,kx,xv) * coefs * spcol(knotsy,ky,yv).'

used above makes good sense since, for example, spcol(knotsx,kx,xv) is the matrix whose
(i,q)-th entry equals the value B_{q,kx}(xv(i)) at xv(i) of the q-th B-spline of order kx for the
knot sequence knotsx, while we want to evaluate the expression

sum sum coefs(q,r) B_{q,kx}(x) B_{r,ky}(y)

q r

= sum sum B_{q,kx}(x) coefs(q,r) B_{r,ky}(y)

q r

at (x,y) = (xv(i),yv(j)).

More Efficient Alternatives

Since the matrices spcol(knotsx,kx,xv) and spcol(knotsy,ky,yv) are banded, it may be
more efficient for "large" xv and yv (though perhaps more memory-consuming) to make use of
fnval.

value2 = fnval(spmak(knotsx,fnval(spmak(knotsy,coefs),yv).'),xv).';

 Bivariate Tensor Product Splines

12-137

In fact, fnval and spmak can deal directly with multivariate splines, hence the above statement can
be replaced by

value3 = fnval(spmak({knotsx,knotsy},coefs), {xv,yv});

Better yet, the construction of the approximation can be done by one call to spap2, therefore we can
obtain these values directly from the given data by the statement

value4 = fnval(spap2({knotsx,knotsy},[kx ky],{x,y},z), {xv,yv});

Check it Out

Here is a check, specifically, the relative difference between the values computed in these four
different ways.

diffs = abs(values-value2) + abs(values-value3) + abs(values-value4);
max(max(diffs)) / max(max(abs(values)))

ans = 1.1206e-15

The four methods return the same values, up to round-off error.

Error of the Approximation

Here is a plot of the error, i.e., the difference between the given data value and the value of the spline
approximation at those data sites.

errors = z - spcol(knotsx,kx,x)*coefs*spcol(knotsy,ky,y).';
mesh(x,y,errors.');
xlabel('x'); ylabel('y');
view(150,50);
title('Error at the Given Data Sites');

12 Examples

12-138

The relative error is

max(max(abs(errors))) / max(max(abs(z)))

ans = 0.0539

This is perhaps not too impressive. On the other hand, the ratio

(degrees of freedom used) / (number of data points)

is only

numel(coefs)/numel(z)

ans = 0.2909

Apparent Bias of This Approach

The approach followed here seems biased: We first think of the given data values z as describing a
vector-valued function of y, and then we treat the matrix formed by the vector coefficients of the
approximating curve as describing a vector-valued function of x.

What happens when we take things in the opposite order, i.e., think of z as describing a vector-valued
function of x, and then treat the matrix made up from the vector coefficients of the approximating
curve as describing a vector-valued function of y?

Perhaps surprisingly, the final approximation is the same, up to roundoff. The next section contains
the numerical experiment confirming that.

 Bivariate Tensor Product Splines

12-139

Doing It the Other Way Around: Start With a Spline Space in X

First, we fit a spline curve to the data, but this time with x as the independent variable, hence it is the
rows of z which now become the data values. Correspondingly, we must supply z.' (rather than z) to
spap2, and obtain

spb = spap2(knotsx,kx,x,z.');

a spline approximation to all the curves (x,z(:,j)) for j=1:J. In particular,

valsb = fnval(spb,xv).';

creates a matrix whose (i,j)-th element can be taken as an approximation to the value
f(xv(i),y(j)) of the underlying function f at the grid point (xv(i),y(j)). This is evident when
we plot valsb.

mesh(xv,y,valsb.');
xlabel('x'); ylabel('y');
view(150,50);
title('Simultaneous Approximation to All Curves in the X-Direction');

Again note the ridges, this time running along the x-direction. They confirm that, once again, we are
plotting smooth curves in one direction only.

From Curves to a Surface: Using a Spline Space in the Y-Direction

Now comes the second step, to get the actual surface.

12 Examples

12-140

Let coefsx be the coefficients for spb, i.e.,

coefsx = fnbrk(spb,'c');

Abstractly, you can think of the spline spb as the vector-valued function

x |--> sum coefsx(r,:) B_{r,kx}(x)

r

with the j-th entry coefsx(r,j) of the vector coefficient coefsx(r,:) corresponding to y(j), for
all j. Thus, we now fit each curve (y,coefsx(r,:)) by a spline, using the same order ky and the
same appropriate knot sequence knotsy for each r.

spb2 = spap2(knotsy,ky,y,coefsx.');

In the construction of spb2, we again need to transpose the coefficient matrix from spb, since spap2
takes the columns of its last input argument as the data values.

For this reason, there is now no need to transpose the coefficient matrix coefsb of the resulting
"curve".

coefsb = fnbrk(spb2,'c');

Claim: coefsb equals the earlier coefficient array coefs, up to round-off. For a proof of this, see the
discussion of the tensor product construct in Curve Fitting Toolbox documentation. Here, we simply
make the following check.

max(max(abs(coefs - coefsb)))

ans = 7.7716e-16

Thus, the bivariate spline approximation

(x,y) |--> sum sum coefsb(q,r) B_{q,kx}(x) B_{r,ky}(y)

q r

to the original data

(x(i),y(j)) |--> f(x(i),y(j)) = z(i,j)

obtained coincides with the earlier one, which generated coefs rather than coefsb.

As observed earlier, you can carry out the entire construction we just went through (in two ways),
using just two statements, one for the construction of the least-squares approximant, the other for its
evaluation at a rectangular mesh.

tsp = spap2({knotsx,knotsy},[kx,ky],{x,y},z);
valuet = fnval(tsp,{xv,yv});

Here, as another check, is the relative difference between the values computed earlier and those
computed now:

max(max(abs(values-valuet))) / max(max(abs(values)))

ans = 3.7353e-16

 Bivariate Tensor Product Splines

12-141

Another Example: Interpolation

Since the data come from a smooth function, we should be interpolating it, i.e., using spapi instead
of spap2, or, equivalently, use spap2 with the appropriate knot sequences. For illustration, here is
the same process done with spapi.

To recall, the (univariate) data sites were

x

x = 1×15

 0 0.0300 0.0700 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 0.9300 0.9700 1.0000

y

y = 1×11

 0 0.0300 0.0700 0.1667 0.3333 0.5000 0.6667 0.8333 0.9300 0.9700 1.0000

We use again quadratic splines in y, hence use knots midway between data sites.

knotsy = augknt([0 1 (y(2:(end-2))+y(3:(end-1)))/2], ky);
spi = spapi(knotsy,y,z);
coefsy = fnbrk(spi,'c');

Interpolation of Resulting Coefficients

We use again cubic splines in x, and use the not-a-knot condition. We therefore use all but the second
and the second-to-last data points as knots.

knotsx = augknt(x([1,3:(end-2),end]), kx);
spi2 = spapi(knotsx,x,coefsy.');
icoefs = fnbrk(spi2,'c').';

Evaluation

We are now ready to evaluate the interpolant

ivalues = spcol(knotsx,kx,xv)*icoefs*spcol(knotsy,ky,yv).';

and plot the interpolant at a fine mesh.

mesh(xv,yv,ivalues.');
xlabel('x'); ylabel('y');
view(150,50);
title('The Spline Interpolant');

12 Examples

12-142

Again, the steps above can be carried out using just two statements, one for the construction of the
interpolant, the other for its evaluation at a rectangular mesh.

tsp = spapi({knotsx,knotsy},{x,y},z);
valuet = fnval(tsp,{xv,yv});

For a check, we also compute the relative difference between the values computed earlier and those
computed now.

max(max(abs(ivalues-valuet))) / max(max(abs(ivalues)))

ans = 3.6712e-16

Error of the Approximation

Next, we compute the error of the interpolant as an approximation to the Franke function.

fvalues = franke(repmat(xv.',1,length(yv)),repmat(yv,length(xv),1));
error = fvalues - ivalues;
mesh(xv,yv,error.');
xlabel('x'); ylabel('y');
view(150,50);
title('Interpolation error');

 Bivariate Tensor Product Splines

12-143

The relative approximation error is

max(max(abs(error))) / max(max(abs(fvalues)))

ans = 0.0409

12 Examples

12-144

Solving a Nonlinear ODE with a Boundary Layer by Collocation

This example shows how to use spline commands from Curve Fitting Toolbox™ solve a nonlinear
ordinary differential equation (ODE).

The Problem

We consider the nonlinear singularly perturbed problem

epsilon D^2g(x) + (g(x))^2 = 1 on [0..1]

Dg(0) = g(1) = 0.

This problem is already quite difficult for epsilon = .001, so we choose a modest

epsilon = .1;

The Approximation Space

We seek an approximate solution by collocation from C^1 piecewise cubics with a specified break
sequence breaks, hence want the order k to be 4.

breaks = (0:4)/4;
k = 4;

We obtain the corresponding knot sequence as

knots = augknt(breaks,k,2)

knots = 1×14

 0 0 0 0 0.2500 0.2500 0.5000 0.5000 0.7500 0.7500 1.0000 1.0000 1.0000 1.0000

Whatever the choice of order and knots, the corresponding spline space has dimension

n = length(knots) - k

n = 10

Discretization

The number of degrees of freedom, 10, fits nicely with the fact that we expect to collocate at two sites
per polynomial piece, for a total of 8 conditions, bringing us to 10 conditions altogether once we add
the two side conditions.

We choose two Gauss sites for each interval. For the `standard' interval [-1/2 .. 1/2] of unit length,
these are the two sites

gauss = .5773502692*[-1/2; 1/2];

From this, we obtain the whole collection of collocation sites by

ninterv = length(breaks)-1;
temp = (breaks(2:ninterv+1)+breaks(1:ninterv))/2;
temp = temp([1 1],:) + gauss*diff(breaks);
colsites = temp(:).';

 Solving a Nonlinear ODE with a Boundary Layer by Collocation

12-145

The Numerical Problem

The numerical problem we want to solve is to find a piecewise polynomial (or pp) y of the given order,
and with the given knots, that satisfies the nonlinear system

Dy(0) = 0

(y(x))^2 + epsilon D^2y(x) = 1 for x in colsites

y(1) = 0

Linearization

If y is our current approximation to the solution, then the linear problem for the better (?) solution z
by Newton's method reads

Dz(0) = 0

w_0(x)z(x) + epsilon D^2z(x) = b(x) for x in colsites

z(1) = 0

with w_0(x) := 2y(x) and b(x) := (y(x))^2 + 1.

In fact, by choosing w_0(1) := 1, w_1(0) := 1, and

w_2(x) := epsilon, w_1(x) := 0 for x in colsites

and choosing all other values of w_0, w_1, w_2, and b not yet specified to be zero, we can give our
system the uniform shape

w_0(x)z(x) + w_1(x)Dz(x) + w_2(x)D^2z(x) = b(x) for x in sites

where

sites = [0,colsites,1];

Linear System to be Solved

This system converts into one for the B-spline coefficients of its solution z. For this, we need the
zeroth, first, and second derivative at every x in sites and for every relevant B-spline. These values
are supplied by the spcol command.

Here is the essential part of the documentation for spcol:

SPCOL B-spline collocation matrix.

COLLOC = SPCOL(KNOTS,K,TAU) is the matrix

[D^m(i)B_j(TAU(i)) : i=1:length(TAU), j=1:length(KNOTS)-K],

with D^m(i)B_j the m(i)-fold derivative of B_j,

B_j the j-th B-spline of order K for the knot sequence KNOTS,

TAU a sequence of sites,

12 Examples

12-146

both KNOTS and TAU are assumed to be nondecreasing, and

m(i) is the integer #{ j<i : TAU(j) = TAU(i) }, i.e., the

'cumulative' multiplicity of TAU(i) in TAU.

We use spcol to supply the matrix

colmat = spcol(knots,k, brk2knt(sites,3));

with brk2knt used here to triple each entry of sites, and thus we get in colmat, for each x in
sites, the value and the first and second derivatives at x of all the relevant B-splines.

From this, we get the collocation matrix by combining the row triple associated with x using the
weights w_0(x), w_1(x), w_2(x) to get the row corresponding to x of the matrix of our linear
system.

Need Initial Guess for Y

We also need a current approximation y from our spline space. Initially, we get it by interpolating
some reasonable initial guess from our pp space at sites. For that guess, we use the parabola

x^2 - 1

which does satisfy the end conditions and lies in our spline space. We obtain its B-form by
interpolation at sites. We select the relevant interpolation matrix from the full matrix colmat. Here
it is, in several cautious steps:

intmat = colmat([2 1+(1:(n-2))*3,1+(n-1)*3],:);
coefs = intmat\[0 colsites.*colsites-1 0].';
y = spmak(knots,coefs.');

We plot the result, to be sure -- it should be exactly x^2-1.

fnplt(y,'g');
legend('Initial Guess (x^2-1)','location','NW');
axis([-0.01 1.01 -1.01 0.01]);
hold on

 Solving a Nonlinear ODE with a Boundary Layer by Collocation

12-147

Iteration

We can now complete the construction and solution of the linear system for the improved
approximate solution z from our current guess y. In fact, with the initial guess y available, we now
set up an iteration, to be terminated when the change z-y is less than a specified tolerance.

tolerance = 6.e-9;

The max-norms of the change z-y at each iteration are shown as output below, and the figure shows
each of the iterates.

while 1
 vtau = fnval(y,colsites);
 weights = [0 1 0;
 [2*vtau.' zeros(n-2,1) repmat(epsilon,n-2,1)];
 1 0 0];
 colloc = zeros(n,n);
 for j = 1:n
 colloc(j,:) = weights(j,:)*colmat(3*(j-1)+(1:3),:);
 end
 coefs = colloc\[0 vtau.*vtau+1 0].';
 z = spmak(knots,coefs.');
 fnplt(z,'k');
 maxdif = max(max(abs(z.coefs-y.coefs)));
 fprintf('maxdif = %g\n',maxdif)
 if (maxdif<tolerance), break, end

12 Examples

12-148

 % now reiterate
 y = z;
end

maxdif = 0.206695
maxdif = 0.01207
maxdif = 3.95151e-05
maxdif = 4.43216e-10

legend({'Initial Guess (x^2-1)' 'Iterates'},'location','NW');

That looks like quadratic convergence, as expected from a Newton iteration.

Getting Ready for a Smaller Epsilon

If we now decrease epsilon, we create more of a boundary layer near the right endpoint, and this
calls for a nonuniform mesh. We use newknt to construct an appropriate (finer) mesh from the
current approximation.

knots = newknt(z, ninterv+1);
breaks = knt2brk(knots);
knots = augknt(breaks,4,2);
n = length(knots)-k;

Collocation Sites for New Breaks

Next, we get the collocation sites corresponding to the new breaks

 Solving a Nonlinear ODE with a Boundary Layer by Collocation

12-149

ninterv = length(breaks)-1;
temp = ((breaks(2:ninterv+1)+breaks(1:ninterv))/2);
temp = temp([1 1], :) + gauss*diff(breaks);
colsites = temp(:).';
sites = [0,colsites,1];

and then the new collocation matrix.

colmat = spcol(knots,k, brk2knt(sites,3));

Initial Guess

We obtain the initial guess y as the interpolant from the current spline space to the computed
solution z. We plot the resulting interpolant to be sure -- it should be close to our current solution.

intmat = colmat([2 1+(1:(n-2))*3,1+(n-1)*3],:);
y = spmak(knots,[0 fnval(z,colsites) 0]/intmat.');
fnplt(y,'c');
ax = gca;
h = ax.Children;
legend(h([6 5 1]),{'Initial Guess (x^2-1)' 'Iterates' ...
 'New Initial Guess for New Value of epsilon'}, ...
 'location','NW');

Iteration with Smaller Epsilon

Now we divide epsilon by 3 and repeat the above iteration. Convergence is again quadratic.

12 Examples

12-150

epsilon = epsilon/3;
while 1
 vtau = fnval(y,colsites);
 weights = [0 1 0;
 [2*vtau.' zeros(n-2,1) repmat(epsilon,n-2,1)];
 1 0 0];
 colloc = zeros(n,n);
 for j = 1:n
 colloc(j,:) = weights(j,:)*colmat(3*(j-1)+(1:3),:);
 end
 coefs = colloc\[0 vtau.*vtau+1 0].';
 z = spmak(knots,coefs.');
 fnplt(z,'b');
 maxdif = max(max(abs(z.coefs-y.coefs)));
 fprintf('maxdif = %g\n',maxdif)
 if (maxdif<tolerance), break, end

 % now reiterate
 y = z;
end

maxdif = 0.237937
maxdif = 0.0184488
maxdif = 0.000120467
maxdif = 4.78116e-09

ax = gca;
h = ax.Children;
legend(h([10 9 5 4]), ...
 {'Initial Guess (x^2-1) for epsilon = .1' 'Iterates' ...
 sprintf('Initial Guess for epsilon = %.3f',epsilon) ...
 'Iterates'}, 'location','NW');

 Solving a Nonlinear ODE with a Boundary Layer by Collocation

12-151

Very Small Epsilon

For a much smaller epsilon, we merely repeat these calculations, dividing epsilon by 3 each time.

for ee = 1:4
 knots = newknt(z, ninterv+1);
 breaks = knt2brk(knots);
 knots = augknt(breaks,4,2);
 n = length(knots)-k;

 ninterv = length(breaks)-1;
 temp = ((breaks(2:ninterv+1)+breaks(1:ninterv))/2);
 temp = temp([1 1], :) + gauss*diff(breaks);
 colsites = temp(:).';
 sites = [0,colsites,1];

 colmat = spcol(knots,k, brk2knt(sites,3));

 intmat = colmat([2 1+(1:(n-2))*3,1+(n-1)*3],:);
 y = spmak(knots,[0 fnval(z,colsites) 0]/intmat.');
 fnplt(y,'c')

 epsilon = epsilon/3;
 while 1
 vtau = fnval(y,colsites);
 weights = [0 1 0;
 [2*vtau.' zeros(n-2,1) repmat(epsilon,n-2,1)];
 1 0 0];

12 Examples

12-152

 colloc = zeros(n,n);
 for j = 1:n
 colloc(j,:) = weights(j,:)*colmat(3*(j-1)+(1:3),:);
 end
 coefs = colloc\[0 vtau.*vtau+1 0].';
 z = spmak(knots,coefs.');
 fnplt(z,'b');
 maxdif = max(max(abs(z.coefs-y.coefs)));
 if (maxdif<tolerance), break, end

 % now reiterate
 y = z;
 end
end
ax = gca;
h = ax.Children;
legend(h([30 29 25 24]), ...
 {'Initial Guess (x^2-1) for epsilon = .1' 'Iterates' ...
 'Initial Guesses for epsilon = .1/3^j, j=1:5' ...
 'Iterates'},'location','NW');

Plot the Breaks Used for Smallest Epsilon

Here is the final distribution of breaks, showing newknt to have worked well in this case.

breaks = fnbrk(fn2fm(z,'pp'),'b');
bb = repmat(breaks,3,1);
cc = repmat([0;-1;NaN],1,length(breaks));

 Solving a Nonlinear ODE with a Boundary Layer by Collocation

12-153

plot(bb(:),cc(:),'r');
hold off
ax = gca;
h = ax.Children;
legend(h([31 30 26 25 1]), ...
 {'Initial Guess (x^2-1) for epsilon = .1' 'Iterates' ...
 'Initial Guesses for epsilon = .1/3^j, j=1:5' ...
 'Iterates' 'Breaks for epsilon = .1/3^5'},'location','NW');

Plot Residual for Smallest Epsilon

Recall that we are solving the ODE

epsilon D^2g(x) + (g(x))^2 = 1 on [0..1]

As a check, we compute and plot the residual for the computed solution for the smallest epsilon. This,
too, looks satisfactory.

xx = linspace(0,1,201);
plot(xx, 1 - epsilon*fnval(fnder(z,2),xx) - (fnval(z,xx)).^2)
title('Residual for the Computed Solution for Smallest epsilon');

12 Examples

12-154

 Solving a Nonlinear ODE with a Boundary Layer by Collocation

12-155

Construct Chebyshev Spline

This example shows how to use commands from Curve Fitting Toolbox™ to construct a Chebyshev
spline.

Chebyshev (a.k.a. Equioscillating) Spline Defined

By definition, for given knot sequence t of length n+k, C = C_{t,k} is the unique element of
S_{t,k} of max-norm 1 that maximally oscillates on the interval [t_k .. t_{n+1}] and is positive
near t_{n+1}. This means that there is a unique strictly increasing tau of length n so that the
function C in S_{k,t} given by

C(tau(i)) = (-1)^{n-i},

for all i, has max-norm 1 on [t_k .. t_{n+1}]. This implies that

tau(1) = t_k,

tau(n) = t_{n+1},

and that

t_i < tau(i) < t_{k+i},

for all i. In fact,

t_{i+1} <= tau(i) <= t_{i+k-1},

for all i. This brings up the point that the knot sequence t is assumed to make such an inequality
possible, which turns out to be equivalent to having all the elements of S_{k,t} continuous.

t = augknt([0 1 1.1 3 5 5.5 7 7.1 7.2 8], 4);
[tau,C] = chbpnt(t,4);
xx = sort([linspace(0,8,201),tau]);
plot(xx,fnval(C,xx),'LineWidth',2);
hold on
breaks = knt2brk(t);
bbb = repmat(breaks,3,1);
sss = repmat([1;-1;NaN],1,length(breaks));
plot(bbb(:), sss(:),'r');
hold off
ylim([-2 2]);
title('The Chebyshev Spline for a Particular Knot Sequence');
legend({'Chebyshev Spline' 'Knots'});

12 Examples

12-156

In short, the Chebyshev spline C looks just like the Chebyshev polynomial. It performs similar
functions. For example, its extrema tau are particularly good sites to interpolate at from S_{k,t}
since the norm of the resulting projector is about as small as can be.

hold on
plot(tau,zeros(size(tau)),'k+');
hold off
legend({'Chebyshev Spline' 'Knots' 'Extrema'});

 Construct Chebyshev Spline

12-157

Choice of Spline Space

In this example, we try to construct C for a given spline space.

We deal with cubic splines with simple interior knots, specified by

k = 4;
breaks = [0 1 1.1 3 5 5.5 7 7.1 7.2 8];
t = augknt(breaks, k)

t = 1×16

 0 0 0 0 1.0000 1.1000 3.0000 5.0000 5.5000 7.0000 7.1000 7.2000 8.0000 8.0000 8.0000 8.0000

thus getting a spline space of dimension

n = length(t)-k

n = 12

12 Examples

12-158

Initial Guess

As our initial guess for the tau, we use the knot averages

tau(i) = (t_{i+1} + ... + t_{i+k-1})/(k-1)

recommended as good interpolation site choices, and plot the resulting first approximation to C.

tau = aveknt(t,k)

tau = 1×12

 0 0.3333 0.7000 1.7000 3.0333 4.5000 5.8333 6.5333 7.1000 7.4333 7.7333 8.0000

b = (-ones(1,n)).^(n-1:-1:0);
c = spapi(t,tau,b);
plot(breaks([1 end]),[1 1],'k', breaks([1 end]),[-1 -1],'k');
hold on
fnplt(c,'r',1);
hold off
ylim([-2 2]);
title('First Approximation to an Equioscillating Spline');

 Construct Chebyshev Spline

12-159

Iteration

For the complete leveling, use the Remez algorithm. This means that we construct a new tau as the
extrema of our current approximation, c, to C and try again.

To find the extrema, first calculate the derivative Dc of the current approximation c.

Dc = fnder(c);

Take the zeros of Dc using the fnzeros function.The zeros represent the extrema of the current
approximation c. The result is the new guess for tau.

tau(2:n-1) = mean(fnzeros(Dc))

tau = 1×12

 0 0.2765 0.9057 1.7438 3.0779 4.5531 5.5830 6.5841 7.0809 7.3464 7.7889 8.0000

plot(breaks([1 end]),[1 1],'k', breaks([1 end]),[-1 -1],'k');
hold on

12 Examples

12-160

fnplt(c,'r',1);
plot(tau(2:n-1),zeros(1,n-2),'x');
hold off
title('First Approximation to an Equioscillating Spline');
ax = gca;
h = ax.Children;
legend(h([2 1]),{'Approximation','Extrema'});
axis([0 8 -2 2]);

End of First Iteration Step

We compute the resulting new approximation to the Chebyshev spline using the new guess for tau.

cnew = spapi(t,tau,b);

The new approximation is more nearly an equioscillating spline.

plot(breaks([1 end]),[1 1],'k', breaks([1 end]),[-1 -1],'k');
hold on
fnplt(c,'r',1);
fnplt(cnew, 'k', 1);

 Construct Chebyshev Spline

12-161

hold off
ax = gca;
h = ax.Children;
legend(h([2 1]),{'First Approximation' 'Updated Approximation'});
axis([0 8 -2 2]);

If this is not close enough, simply try again, starting from this new tau. For this particular example,
the next iteration already provides the Chebyshev spline to graphic accuracy.

Use of Chebyshev-Demko Points

The Chebyshev spline for a given spline space S_{k,t}, along with its extrema, are available as
optional outputs from the chbpnt command in the toolbox. These extrema were proposed as good
interpolation sites by Steven Demko, hence are now called the Chebyshev-Demko sites. This section
shows an example of their use.

If you have decided to approximate the square-root function on the interval [0 .. 1] by cubic
splines with knot sequence

12 Examples

12-162

k = 4;
n = 10;
t = augknt(((0:n)/n).^8,k);

then a good approximation to the square-root function from that specific spline space is given by

tau = chbpnt(t,k);
sp = spapi(t,tau,sqrt(tau));

as is evidenced by the near equioscillation of the error.

xx = linspace(0,1,301);
plot(xx, fnval(sp,xx)-sqrt(xx));
title({'Error in Interpolant to Square Root','at Chebyshev-Demko Sites.'});

 Construct Chebyshev Spline

12-163

Export Fit from Curve Fitter App to Simulink Lookup Table

This example shows how to create a surface fit using the Curve Fitter app, and then export the fit to a
Simulink® 2-D Lookup Table (Simulink). You can follow the same workflow to export a curve fit to a
1-D Lookup Table (Simulink).

Create Surface Fit in Curve Fitter App

Load the BatteryDataFitter data set.

load BatteryDataFitter

The table batteryMeasurementData in the data set contains three battery measurement variables:
Temperature, SOC (State of Charge), and Resistance.

Open the Curve Fitter app.

curveFitter

Alternatively, on the Apps tab click the Show more arrow to display the apps gallery. In in the Math,
Statistics and Optimization group, click Curve Fitter.

In the Curve Fitter app, select the data variables for the fit. On the Curve Fitter tab, in the Data
section, click Select Data. In the Select Fitting Data dialog box, select the table name
batteryMeasurementData for each data variable. Then, select Temperature as the X data value,
SOC as the Y data value, and Resistance as the Z data value.

The Curve Fitter app plots the data points as you select variables. By default, the app creates an
interpolant surface fit that passes through the data points. To obtain a smoother fit, in the Fit
Options pane, select Cubic spline for Interpolation method. For more information about
interpolation methods, see “About Interpolation Methods” on page 6-3.

12 Examples

12-164

The app creates an interpolant fit with cubic spline interpolation and no extrapolation. The data has
two outliers at the maximum and minimum values of Resistance. To remove the outliers, click
Exclude outliers on the axes toolbar, and then click each outlier in the fit plot.

The interpolant surface fit plot now excludes the two outliers.

 Export Fit from Curve Fitter App to Simulink Lookup Table

12-165

By default, the app does not extrapolate outside of the fitting data's convex hull for the cubic spline
interpolation method. To estimate Resistance outside of the convex hull using nearest neighbor
extrapolation, select Nearest neighbor for Extrapolation method in the Fit Options pane. For
more information about extrapolation methods, see “Extrapolation for Interpolant Fit Types” on page
6-8.

The extrapolated Resistance values appear as steps that surround the fitting data domain.

12 Examples

12-166

Export Fit to Simulink Lookup Table

In the Curve Fitter app, in the Export section, click Export and select Create Simulink Lookup
Table.

Use the Create Simulink Lookup Table dialog box to specify the Breakpoints 1 and Breakpoints 2
values for the Temperature and SOC variables, respectively. You can specify the breakpoints as a set
of explicit or even-spaced values.

 Export Fit from Curve Fitter App to Simulink Lookup Table

12-167

The Explicit values option allows you to specify the breakpoints by using any expression that
returns a vector. For example, you can use the colon operator (as shown in the following figure), a
comma-separated list (for example, 240, 255.6, 271.2, 286.8, 302.4), or a function (for
example, exp(1:10)). The Lookup table preview section shows a preview of the Simulink lookup
table with a heat map corresponding to the table values.

The Even spacing option allows you to specify a set of evenly spaced breakpoints. For each
breakpoint set, specify the first point, spacing, and number of points.

12 Examples

12-168

In this case, accept the default options and click Export Table to Simulink to export the fit and
extrapolated values to a Simulink lookup table.

Simulink Model with Lookup Table

The app opens a new Simulink model containing a 2-D lookup table block. The name of the block is
surfaceblock (or curveblock if you create it from a curve fit). The model also has two constant inputs
(or one input for a curve fit) and a display output.

 Export Fit from Curve Fitter App to Simulink Lookup Table

12-169

Note that the extrapolation method for the block is different from the extrapolation method used
during surface fitting. By default, Extrapolation method is set to Clip. You can edit
Extrapolation method and other methods by double-clicking the lookup table block and
displaying the Algorithm tab in the Block Parameters dialog box.

To view and edit the breakpoints, click Edit table and breakpoints on the Table and Breakpoints
tab of the Block Parameters dialog box. For an example of how to edit the breakpoints, see “Enter
Breakpoints and Table Data” (Simulink).

12 Examples

12-170

Use Lookup Table in Another Simulink Model

You can use the lookup table created by the Curve Fitter app in another Simulink model. Copy the
surfaceblock block and paste it into a new or existing model. You must also copy and paste
surfaceBlockParameters from the model workspace of the current model to the other model's
workspace. surfaceBlockParameters is a Simulink.LookupTable (Simulink) object. To find the
surfaceBlockParameters object, on the Modeling tab, in the Design section, click the arrow to
display the gallery and select Model Workspace under Repositories. In the model workspace, you
can also configure the code generation settings.

 Export Fit from Curve Fitter App to Simulink Lookup Table

12-171

See Also
Apps
Curve Fitter

Blocks
2-D Lookup Table | 1-D Lookup Table

Objects
Simulink.LookupTable

Related Examples
• “Interactive Curve and Surface Fitting” on page 2-2
• “Interpolation with Curve Fitting Toolbox” on page 6-3
• “Anatomy of a Lookup Table” (Simulink)
• “Edit Lookup Table Data with Lookup Table Spreadsheet” (Simulink)
• “Characteristics of Lookup Table Data” (Simulink)

12 Examples

12-172

Fit Polynomial Model to Data

This example shows how to fit a polynomial model to data using the linear least-squares method.

Load the patients data set.

load patients

The variables Diastolic and Systolic contain data for diastolic and systolic blood pressure
measurements, respectively. Fit a third-degree polynomial to the data with Diastolic as the
predictor variable and Systolic as the response.

polymodel = fit(Diastolic,Systolic,"poly3")

polymodel =
 Linear model Poly3:
 polymodel(x) = p1*x^3 + p2*x^2 + p3*x + p4
 Coefficients (with 95% confidence bounds):
 p1 = -0.001061 (-0.003673, 0.001551)
 p2 = 0.2844 (-0.3701, 0.9389)
 p3 = -24.72 (-79.2, 29.76)
 p4 = 821.1 (-685.5, 2328)

polymodel contains the results of the fit. Display the least-squares method used to estimate the
coefficients by using the function fitoptions.

opts = fitoptions(polymodel);
opts.Method

ans =
'LinearLeastSquares'

The output shows that polymodel is fit to the data with the linear least-squares method. Evaluate
polymodel at the values in Diastolic, and display the result together with a scatter plot of the
blood pressure data.

plot(polymodel,Diastolic,Systolic)

 Fit Polynomial Model to Data

12-173

The plot shows that polymodel follows the bulk of the data.

See Also
Functions
fit | plot

More About
• “Introduction to Least-Squares Fitting” on page 4-73

12 Examples

12-174

Improve Model Fit with Weights

This example shows how to fit a polynomial model to data using both the linear least-squares method
and the weighted least-squares method for comparison.

Generate sample data from different normal distributions by using the randn function.

rng("default") % For reproducibility

rnorm = [];
idx = [];

for k=1:20
 r = k*randn([20,1]) + (1/20)*(k^3);
 rnorm = [rnorm;r];
 idx = [idx;ones(20,1).*k];
end

The dependent variable rnorm contains sample data from 20 normal distributions. The independent
variable idx contains integers indicating whether two elements in rnorm are sampled from the same
normal distribution.

Fit a third-degree polynomial model to idx and rnorm. Return information about the coefficient
estimates and the algorithm used to fit the model.

[p3fit,~,fitinfo] = fit(idx,rnorm,"poly3")

p3fit =
 Linear model Poly3:
 p3fit(x) = p1*x^3 + p2*x^2 + p3*x + p4
 Coefficients (with 95% confidence bounds):
 p1 = 0.05156 (0.0438, 0.05932)
 p2 = -0.03993 (-0.2875, 0.2076)
 p3 = 0.1418 (-2.124, 2.408)
 p4 = 0.0462 (-5.585, 5.678)

fitinfo = struct with fields:
 numobs: 400
 numparam: 4
 residuals: [400×1 double]
 Jacobian: [400×4 double]
 exitflag: 1
 algorithm: 'QR factorization and solve'
 iterations: 1

p3fit contains the estimates for the model coefficients with 95% confidence intervals. The default
fitting method for fitting a polynomial model is linear least squares. fitinfo contains information
about the fitting algorithm used to fit the coefficients to the data. The error in the data can be
estimated by the residuals stored in fitinfo.

Plot the residuals using a stem plot.

stem(idx,fitinfo.residuals)
xlabel("idx")
ylabel("residuals")

 Improve Model Fit with Weights

12-175

The plot of the residuals shows that their variance increases as the values in idx increase. The
nonconstant variances across the different values of idx indicate that the weighted least-squares
fitting method is more appropriate for calculating the model coefficients.

Create a vector of zeros for later storage of the weights.

W = zeros(length(rnorm),1);

The weights you supply transform the residual variances so that they are constant for different values
of idx. Define the weight for each element in rnorm as the reciprocal of the residual variance for the
corresponding value in idx. Then fit the model with the weights.

for k=1:20
 rnorm_idx = rnorm(idx==k);
 recipvar = 1/var(rnorm_idx);
 w = (idx==k).*recipvar;
 W = W+w;
end
[wp3fit,~,wfitinfo] = fit(idx,rnorm,"poly3","Weights",W)

wp3fit =
 Linear model Poly3:
 wp3fit(x) = p1*x^3 + p2*x^2 + p3*x + p4
 Coefficients (with 95% confidence bounds):
 p1 = 0.04894 (0.04419, 0.0537)
 p2 = 0.03601 (-0.08744, 0.1595)
 p3 = -0.4262 (-1.253, 0.4009)
 p4 = 0.9836 (-0.1959, 2.163)

12 Examples

12-176

wfitinfo = struct with fields:
 numobs: 400
 numparam: 4
 residuals: [400×1 double]
 Jacobian: [400×4 double]
 exitflag: 1
 algorithm: 'QR factorization and solve'
 iterations: 1

wp3fit and wfitinfo contain the results of the weighted least-squares fitting.

Display p3fit, wp3fit, and rnorm in the same plot.

plot(p3fit,idx,rnorm)
hold on
plot(wp3fit,"g")
xlabel("idx")
ylabel("rnorm")
legend(["rnorm","linear least-squares fit","weighted least-squares fit"])
hold off

The plot shows wp3fit closely tracking p3fit.

You can determine whether wp3fit is a better fit than p3fit by plotting the residuals.

 Improve Model Fit with Weights

12-177

stem(idx,wfitinfo.residuals)
xlabel("idx")
ylabel("residuals")

The output shows that the wp3fit residuals are smaller than the p3fit residuals. The variances of
the wp3fit residuals are also more similar for different values of idx than the variances of the
p3fit residuals.

See Also
Functions
fit | stem

More About
• “Introduction to Least-Squares Fitting” on page 4-73

12 Examples

12-178

Compare Robust Fitting Methods

This example shows how to fit a polynomial model to data using the bisquare weights, least absolute
residuals (LAR), and linear least-squares methods.

Create a vector of noisy data by using the function randn.

rng("default") % Set the seed for reproducibility
noise = randn([200,1]);

Create a vector of evenly spaced points between 0 and 2π by using the linspace function. Create a
vector of sample data by adding the noisy data to one sine wave cycle.

theta = linspace(0,2*pi,200)';
data = sin(theta) + noise;

Add outliers to the data by replacing every tenth value of data with a random value from the normal
distribution. Specify a mean of 5 and standard deviation of 1 for the random values.

for i=10:10:200
 data(i) = randn+5;
end

Display a box plot of the sample data.

boxchart(data)

 Compare Robust Fitting Methods

12-179

Place your cursor on the box plot to display the box plot statistics.

12 Examples

12-180

The figure indicates that the outliers are data points with values greater than 4.288.

Fit four third-degree polynomial models to the data by using the function fit with different fitting
methods. Use the two robust least-squares fitting methods: bisquare weights method to calculate the
coefficients of the first model, and the LAR method to calculate the coefficients of the third model.
Use the linear least-squares method to calculate the coefficients of the second and fourth models. To
remove the outliers from the data in the fitting of the fourth model, exclude data points greater than
4.288.

bisquarepolyfit = fit(theta,data,"poly3",'Robust',"Bisquare");
linearpolyfit = fit(theta,data,"poly3");
larpolyfit = fit(theta,data,"poly3",Robust="LAR");
excludeoutlierspolyfit = fit(theta,data,"poly3",...
 Exclude=data>4.288);

Compare the bisquare weights and linear least-squares fits by plotting them in the same plot with the
data.

plot(bisquarepolyfit,theta,data)
hold on
plot(linearpolyfit,"g")
legend("data","bisquare weights fit","linear least-squares fit")
xlabel("theta")
ylabel("data")
hold off

 Compare Robust Fitting Methods

12-181

As shown in the plot, the curve of the linear-least squares fit is higher and closer to the outliers than
the curve of the bisquare weights fit. The curve of the bisquare weights fit is more central to the bulk
of the data. The relative positions of the curves indicate that the outliers have a larger effect on the
linear least-squares fit.

Compare the bisquare weights and LAR fits.

plot(bisquarepolyfit,theta,data)
hold on
plot(larpolyfit,"g")
legend("data","bisquare weights fit","LAR fit")
xlabel("theta")
ylabel("data")
hold off

12 Examples

12-182

The curve of the LAR fit follows the curve of the bisquare weights fit closely, and is not as influenced
by the outliers compared to the linear least-squares fit. You can zoom in to the plot to see that the
curve of the LAR fit is slightly higher than the curve of the bisquare weights fit for most values of
theta.

Compare the bisquare weights fit to the linear-least squares fit without outliers.

plot(bisquarepolyfit,theta,data)
hold on
plot(excludeoutlierspolyfit,"g")
legend("data","bisquare weights fit","linear least-squares fit (without outliers)")
xlabel("theta")
ylabel("data")
hold off

 Compare Robust Fitting Methods

12-183

The linear-least squares fit does not appear to be greatly influenced by the outliers. However, the fit
is not as central to the bulk of the data compared to the bisquare weights fit. Together, the plots
indicate that, out of the four models, the model fit with the bisquare weights method is the most
central to the bulk of the data.

See Also
Functions
fit | boxchart

More About
• “Introduction to Least-Squares Fitting” on page 4-73

12 Examples

12-184

Fit Exponential Model to Data

This example shows how to fit an exponential model to data using the trust-region and Levenberg-
Marquardt nonlinear least-squares algorithms.

Load the census data set.

load census

The variables pop and cdate contain data for the population size and the year the census was taken,
respectively.

Display a scatter plot of the data.

scatter(cdate,pop)
xlabel("Year")
ylabel("Population")

 Fit Exponential Model to Data

12-185

The plot shows that the population increases from year to year in a shape that resembles an
exponential function.

Fit a two-term exponential model to the population data using the default trust-region fitting
algorithm. Return the results of the fit and the goodness-of-fit statistics.

[exp_tr,gof_tr] = fit(cdate,pop,"exp2")

exp_tr =
 General model Exp2:
 exp_tr(x) = a*exp(b*x) + c*exp(d*x)
 Coefficients (with 95% confidence bounds):
 a = 7.169e-17
 b = 0.02155
 c = 0
 d = 0.02155

gof_tr = struct with fields:
 sse: 1.2412e+04
 rsquare: 0.8995
 dfe: 17
 adjrsquare: 0.8818
 rmse: 27.0209

exp_tr contains the results of the fit, including coefficients calculated with the trust-region fitting
algorithm. The goodness-of-fit statistics stored in gof_tr include the root mean squared error
(RMSE) of 27.0209.

Plot the model in exp_tr together with a scatter plot of the data.

plot(exp_tr,cdate,pop)
legend(["data","predicted value"])
xlabel("Year")
ylabel("Population")

12 Examples

12-186

The plot shows that the model in exp_tr does not closely follow the census data.

Improve the fit by using the Levenberg-Marquardt fitting algorithm to calculate the coefficients.

[exp_lm,gof_lm] = fit(cdate,pop,"exp2",Algorithm="Levenberg-Marquardt")

exp_lm =
 General model Exp2:
 exp_lm(x) = a*exp(b*x) + c*exp(d*x)
 Coefficients (with 95% confidence bounds):
 a = 4.282e-17 (-1.125e-11, 1.126e-11)
 b = 0.02477 (-5.67, 5.719)
 c = -3.933e-17 (-1.126e-11, 1.126e-11)
 d = 0.02481 (-5.696, 5.745)

gof_lm = struct with fields:
 sse: 475.9498
 rsquare: 0.9961
 dfe: 17
 adjrsquare: 0.9955
 rmse: 5.2912

 Fit Exponential Model to Data

12-187

exp_lm contains the results of the fit, including coefficients calculated with the Levenberg-
Marquardt fitting algorithm. The goodness-of-fit statistics stored in gof_lm include the RMSE of
5.2912, which is smaller than the RMSE for exp_tr. The relative sizes of the RMSEs indicate that
the model stored in exp_lm fits the data more accurately than the model stored in exp_tr.

Plot the model in exp_lm together with a scatter plot of the data.

plot(exp_lm,cdate,pop)
legend(["data","predicted value"])
xlabel("Year")
ylabel("Population")

The plot shows that the model in exp_lm follows the census data more closely than the model in
exp_tr.

See Also
Functions
fit | plot

12 Examples

12-188

More About
• “Introduction to Least-Squares Fitting” on page 4-73

 Fit Exponential Model to Data

12-189

Functions

13

Curve Fitter
Fit curves and surfaces to data

Description
The Curve Fitter app provides a flexible interface where you can interactively fit curves and surfaces
to data and view plots.

With the Curve Fitter app, you can:

• Create, plot, and compare multiple fits.
• Use linear or nonlinear regression, interpolation, smoothing, and custom equations.
• View goodness-of-fit statistics, display confidence intervals and residuals, remove outliers, and

assess fits with validation data.
• Automatically generate code to fit and plot curves and surfaces, or export fits to the workspace for

further analysis.
• Export a curve or surface fit to a Simulink lookup table. For an example, see “Export Fit from

Curve Fitter App to Simulink Lookup Table” on page 12-164.

13 Functions

13-2

Open the Curve Fitter App
• MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app

icon.
• MATLAB command prompt: Enter curveFitter.

Examples
• “Interactive Curve and Surface Fitting” on page 2-2
• “Data Selection” on page 2-10
• “Compare Fits in Curve Fitter App” on page 2-17
• “Generate Code and Export Fits to the Workspace” on page 7-13
• “Export Fit from Curve Fitter App to Simulink Lookup Table” on page 12-164

Programmatic Use
curveFitter opens the Curve Fitter app or brings focus to the app if it is already open.

curveFitter(x,y) opens the Curve Fitter app and creates a curve fit to the data in x and y. The x
and y arguments must be numeric, have two or more elements, and have the same number of
elements.

curveFitter(x,y,z) opens the Curve Fitter app and creates a surface fit to the data in x, y, and z.
The x, y, and z arguments must be numeric, have two or more elements, and have compatible sizes.
The sizes are compatible if either of the following statements is true.

• x, y, and z are arrays with the same number of elements.
• x and y are vectors of length n and m, respectively, and z is an m-by-n matrix.

curveFitter(x,y,[],w) opens the Curve Fitter app and creates a curve fit with weights w. The
weights w must be a numeric array and have the same number of elements as x and y.

curveFitter(x,y,z,w) opens the Curve Fitter app and creates a surface fit with weights w. The
weights w must be a numeric array and have the same number of elements as z.

curveFitter(filename) loads the Curve Fitter session in filename into the Curve Fitter app.
filename must have the extension .sfit.

Tips
• When selecting data for fitting curves or surfaces in Curve Fitter, you can specify to use table

variables. On the Curve Fitter tab, in the Data section, click Select Data. The app opens a dialog
box. For each data variable (X data, Y data, Z data, or Weights), first select the table name and
then select the name of the column variable that you want to use.

You can also specify validation data using table variables. Click Validation Data in the Data
section of the Curve Fitter tab to open the Select Validation Data dialog box.

 Curve Fitter

13-3

To programmatically open the Curve Fitter app and create a curve fit to x and y, where x and y
are variables in table tbl, enter curveFitter(tbl.x,tbl.y) at the MATLAB command line.
Similarly, enter curveFitter(tbl.x,tbl.y,tbl.z) to create a surface fit in the Curve Fitter
app for the table variables x, y, and z.

Version History
Introduced before R2006a

R2022a: The Curve Fitter app replaces the Curve Fitting app and provides similar
functionality with an improved layout
Behavior changed in R2022a

The Curve Fitting app has been renamed to Curve Fitter. The Curve Fitter app supports the same
workflows as the previous Curve Fitting app, with some minor changes and an improved layout. For
example, Curve Fitter allows you to generate MATLAB code for a selected fit, while the previous
Curve Fitting app allowed you to generate MATLAB code for multiple fits at a time.

The layout of the Curve Fitter app differs from the previous Curve Fitting app. Curve Fitter has a
toolstrip at the top that shows the curve and surface fitting workflow, and the app includes these
panes that display fit information:

• Fits pane that displays plots
• Fit Options pane that displays editable options for the current fit
• Results pane that describes the current fit
• Table Of Fits pane that displays all the fits

If you enter cftool at the MATLAB command line, the software opens the Curve Fitter app. You can
still open saved Curve Fitting app sessions (pre-R2022a) in Curve Fitter. For the recommended way to
open the Curve Fitter app, see “Open the Curve Fitter App” on page 13-0 .

See Also
Functions
fit

Topics
“Interactive Curve and Surface Fitting” on page 2-2
“Data Selection” on page 2-10
“Compare Fits in Curve Fitter App” on page 2-17
“Generate Code and Export Fits to the Workspace” on page 7-13
“Export Fit from Curve Fitter App to Simulink Lookup Table” on page 12-164

13 Functions

13-4

aptknt
Acceptable knot sequence

Syntax
knots = aptknt(tau,k)
[knots,k] = aptknt(tau,k)

Description
knots = aptknt(tau,k) returns a knot sequence suitable for interpolation at the data sites tau
by splines of order k with that knot sequence, provided tau has at least k entries, is nondecreasing,
and satisfies tau(i)<tau(i+k-1) for all i. In that case, there is exactly one spline of order k with
knot sequence knots that matches given values at those sites. This is so because the sequence
knots returned satisfies the Schoenberg-Whitney conditions

knots(i) < tau(i) < knots(i+k), i=1:length(tau)

with equality only at the extreme knots, each of which occurs with exact multiplicity k.

If tau has fewer than k entries, then k is reduced to the value length(tau). An error results if tau
fails to be nondecreasing and/or tau(i) equals tau(i+k-1) for some i.

[knots,k] = aptknt(tau,k) also returns the actual k used (which equals the smaller of the
input k and length(tau)).

Examples
If tau is equally spaced, e.g., equal to linspace(a,b,n) for some n>=4, and y is a sequence of the
same size as tau, then sp = spapi(aptknt(tau,4),tau,y) gives the cubic spline interpolant
with the not-a-knot end condition. This is the same cubic spline as produced by the command
spline(tau,y), but in B-form rather than ppform.

Cautionary Note
If tau is very nonuniform, then use of the resulting knot sequence for interpolation to data at the
sites tau may lead to unsatisfactory results.

Algorithms
The (k-1)-point averages sum(tau(i+1:i+k-1))/(k-1) of the sequence tau, as supplied by
aveknt(tau,k), are augmented by a k-fold tau(1) and a k-fold tau(end). In other words, the
command gives the same result as augknt([tau(1),aveknt(tau,k),tau(end)],k), provided
tau has at least k entries and k is greater than 1.

See Also
augknt | aveknt | newknt | optknt

 aptknt

13-5

argnames
Input argument names of cfit, sfit, or fittype object

Syntax
args = argnames(fun)

Description
args = argnames(fun) returns the input argument (variable and coefficient) names of the cfit,
sfit, or fittype object fun as an n-by-1 cell array of character vectors args, where n =
numargs(fun).

Examples
f = fittype('a*x^2+b*exp(n*x)');
nargs = numargs(f)
nargs =
 4
args = argnames(f)
args =
 'a'
 'b'
 'n'
 'x'

Version History
Introduced in R2006b

See Also
fittype | formula | numargs

13 Functions

13-6

augknt
Augment knot sequence

Syntax
augknt(knots,k)
augknt(knots,k,mults)
[augknot,addl] = augknt(...)

Description
augknt(knots,k) returns a nondecreasing and augmented knot sequence that has the first and
last knot with exact multiplicity k. (This may actually shorten the knot sequence.))

augknt(knots,k,mults) makes sure that the augmented knot sequence returned will, in addition,
contain each interior knot mults times. If mults has exactly as many entries as there are interior
knots, then the jth one will appear mults(j) times. Otherwise, the uniform multiplicity mults(1) is
used. If knots is strictly increasing, this ensures that the splines of order k with knot sequence
augknot satisfy k-mults(j) smoothness conditions across knots(j+1), j=1:length(knots)-2.

[augknot,addl] = augknt(...) also returns the number addl of knots added on the left. (This
number may be negative.)

Examples
If you want to construct a cubic spline on the interval [a..b], with two continuous derivatives, and
with the interior break sequence xi, then augknt([a,b,xi],4) is the knot sequence you should
use.

If you want to use Hermite cubics instead, i.e., a cubic spline with only one continuous derivative,
then the appropriate knot sequence is augknt([a,xi,b],4,2).

augknt([1 2 3 3 3],2) returns the vector [1 1 2 3 3], as does augknt([3 2 3 1 3],2). In
either case, addl would be 1.

 augknt

13-7

aveknt
Provide knot averages

Syntax
tstar = aveknt(t,k)

Description
tstar = aveknt(t,k) returns the averages of successive k-1 knots, i.e., the sites

ti * : = (ti + 1 + ⋅ ⋅ ⋅ + ti + k− 1)/(k− 1), i = 1:n

which are recommended as good interpolation site choices when interpolating from splines of order k
with knot sequence t = ti i = 1

n + k.

Examples
aveknt([1 2 3 3 3],3) returns the vector [2.5000 3.0000], while aveknt([1 2 3],3)
returns the empty vector.

With k and the strictly increasing sequence breaks given, the statements

t = augknt(breaks,k); x = aveknt(t);
sp = spapi(t,x,sin(x));

provide a spline interpolant to the sine function on the interval [breaks(1)..breaks(end)].

For sp the B-form of a scalar-valued univariate spline function, and with tstar and a computed as

tstar = aveknt(fnbrk(sp,'knots'),fnbrk(sp,'order'));
a = fnbrk(sp,'coefs');

the points (tstar(i), a(i)) constitute the control points of the spline, i.e., the vertices of the spline's
control polygon.

See Also
aptknt | chbpnt | optknt

13 Functions

13-8

bkbrk
Part(s) of almost block-diagonal matrix

Syntax
[nb,rows,ncols,last,blocks] = bkbrk(blokmat)
bkbrk(blokmat)

Description
[nb,rows,ncols,last,blocks] = bkbrk(blokmat) returns the details of the almost block-
diagonal matrix contained in blokmat, with rows and last nb-vectors, and blocks a matrix of size
[sum(rows),ncols].

This utility program is not likely to be of interest to the casual user. It is used in slvblk to decode
the information, provided by spcol, about a spline collocation matrix in an almost block diagonal
form especially suited for splines. But bkbrk can also decode the almost block-diagonal form used in
[1].

bkbrk(blokmat) returns nothing, but the details are printed out. This is of use when trying to
understand what went wrong with such a matrix.

References

[1] C. de Boor and R. Weiss. “SOLVEBLOK: A package for solving almost block diagonal linear
systems.” ACM Trans. Mathem. Software 6 (1980), 80–87.

See Also
slvblk | spcol

 bkbrk

13-9

brk2knt
Convert breaks with multiplicities into knots

Syntax
knots = brk2knt(breaks,mults)

Description
knots = brk2knt(breaks,mults) returns the sequence knots that is the sequence breaks but
with breaks(i) occurring mults(i) times, all i. In particular, breaks(i) will not appear unless
mults(i)>0. If, as one would expect, breaks is a strictly increasing sequence, then knots contains
each breaks(i) exactly mults(i) times.

If mults does not have exactly as many entries as does breaks, then all mults(i) are set equal to
mults(1).

Examples
The statements

t = [1 1 2 2 2 3 4 5 5];
[xi,m] = knt2brk(t);
tt = brk2knt(xi,m)

give [1 2 3 4 5] for xi, [2 3 1 1 2] for m, and, finally, t for tt.

See Also
augknt

13 Functions

13-10

bspligui
Experiment with B-spline as function of its knots

Syntax
bspligui

Description
bspligui starts a graphical user interface for exploring how a B-spline depends on its knots. As you
add, move, or delete knots, you see the B-spline and its first three derivatives change accordingly.

You observe the following basic facts about the B-spline with knot sequence t0 ≤ ⋅ ⋅ ⋅ ≤ tk:

• The B-spline is positive on the open interval (t0..tk). It is zero at the end knots, t0 and tk, unless
they are knots of multiplicity k. The B-spline is also zero outside the closed interval [t0..tk], but that
part of the B-spline is not shown in the user interface.

• Even at its maximum, the B-spline is never bigger than 1. It reaches the value 1 inside the interval
(t0..tk) only at a knot of multiplicity at least k–1. On the other hand, that maximum cannot be
arbitrarily small; it seems smallest when there are no interior knots.

• The B-spline is piecewise polynomial of order k, i.e., its polynomial pieces all are of degree <k. For
k = 1:4, you can even observe that all its nonzero polynomial pieces are of exact degree k – 1, by
looking at the first three derivatives of the B-spline. This means that the degree goes up/down by
1 every time you add/delete a knot.

• Each knot tj is a break for the B-spline, but it is permissible for several knots to coincide.
Therefore, the number of nontrivial polynomial pieces is maximally k (when all the knots are
different) and minimally 1 (when there are no “interior” knots), and any number between 1 and k
is possible.

• The smoothness of the B-spline across a break depends on the multiplicity of the corresponding
knot. If the break occurs in the knot sequence m times, then the (k–m)th derivative of the B-spline
has a jump across that break, while all derivatives of order lower than (k–m) are continuous across
that break. Thus, by varying the multiplicity of a knot, you can control the smoothness of the B-
spline across that knot.

• As one knot approaches another, the highest derivative that is continuous across both develops a
jump and the higher derivatives become unbounded. But nothing dramatic happens in any of the
lower-order derivatives.

• The B-spline is bell-shaped in the following sense: if the first derivative is not identically zero, then
it has exactly one sign change in the interval (t0..tk), hence the B-spline itself is unimodal, meaning
that it has exactly one maximum. Further, if the second derivative is not identically zero, then it
has exactly two sign changes in that interval. Finally, if the third derivative is not identically zero,
then it has exactly three sign changes in that interval. This illustrates the fact that, for j = 0:k – 1,
if the jth derivative is not identically zero, then it has exactly j sign changes in the interval (t0..tk);
it is this property that is meant by the term “bell-shaped”. For this claim to be strictly true, one
has to be careful with the meaning of “sign change” in case there are knots with multiplicities. For
example, the (k–1)st derivative is piecewise constant, hence it cannot have k–1 sign changes in the
straightforward sense unless there are k polynomial pieces, i.e., unless all the knots are simple.

 bspligui

13-11

See Also
bspline | chbpnt | spcol

13 Functions

13-12

bspline
Plot B-spline and its polynomial pieces

Syntax
bspline(t)
bspline(t,window)
pp = bspline(t)

Description
bspline(t) plots the B-spline with knot sequence t, as well as the polynomial pieces of which it is
composed. For more information about spline fitting, see About Splines in Curve Fitting Toolbox on
page 1-8.

bspline(t,window) plots the B-spline with knot sequence t, as well as the polynomial pieces of
which it is composed, in the subplot window specified by window.

pp = bspline(t) plots nothing and returns the ppform of the B-spline.

Examples

Plot a B-spline of Order 4

This example shows how to create a B-spline of order 4 using the bspline function.

Create a Knot Sequence and Plot the B-spline

This figure shows a B-spline of order 4 and the four cubic polynomials that composes it.

 bspline

13-13

To replicate this figure in MATLAB ®, first create a knot sequence. A knot sequence must be non-
decreasing.

t = [0 1.5 2.3 4 5];

As you have defined five knots, the B-spline will be of order 4.

Then plot the B-spline with knot sequence t, as well as its polynomial pieces, by using the bspline
function.

bspline(t)

13 Functions

13-14

This B-spline consists of 4 polynomial pieces: the red, green, purple, and black curves in the plot,
each of degree 3.

The vertical lines mark the knots t that you have previously defined.

The B-spline with knots t(i)≤····≤ t(i+k) is positive on the interval (t(i)..t(i+k)) and is zero outside that
interval. It is piecewise-polynomial of order k with breaks at the sites t(i),...,t(i+k). These knots may
coincide, and the precise multiplicity governs the smoothness with which the two polynomial pieces
join there.

Plot Another B-spline in a New Subplot

Create a second knot sequence.

t2=[2 3 4 5];

Plot the B-spline with knot sequence t2 in the same figure but in a different subplot.

bspline(t,1)
bspline(t2 ,2)

 bspline

13-15

Copyright 2019 The MathWorks, Inc.

Input Arguments
t — Knot sequence of spline
vector (default)

Non-decreasing sequence of the knots of the B-spline, specified as a vector.
Data Types: single | double

window — Subplot window
scalar (default)

Index of the subplot of a 2x2 window, specified as a scalar. This value must be less than 5.
Data Types: single | double

Output Arguments
pp — Spline in ppform
spline structure

Spline in ppform, returned as a structure with these fields. For more information on ppform, see The
ppform on page 10-8

13 Functions

13-16

Form — Form of spline
pp

Form of the spline, returned as pp. pp indicates that the spline is given in piecewise polynomial form.

Breaks — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Pieces — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

Version History
Introduced in R2006b

See Also
bspligui

Topics
“Introducing Spline Fitting” on page 8-2
“Types of Splines: ppform and B-form” on page 10-2

 bspline

13-17

category
Category of fit of cfit, sfit, or fittype object

Syntax
cname = category(fun)

Description
cname = category(fun) returns the fit category cname of the cfit, sfit, or fittype object
fun, where cname is one of 'custom', 'interpolant', 'library', or 'spline'.

Examples
f1 = fittype('a*x^2+b*exp(n*x)');
category(f1)
ans =
custom

f2 = fittype('pchipinterp');
category(f2)
ans =
interpolant

f3 = fittype('fourier4');
category(f3)
ans =
library

f4 = fittype('smoothingspline');
category(f4)
ans =
spline

Version History
Introduced in R2006b

See Also
fittype | type

Topics
“List of Library Models for Curve and Surface Fitting” on page 4-10

13 Functions

13-18

cfit
Constructor for cfit object

Syntax
cfun = cfit(ffun, coeff1,...,coeffn)

Description
cfun = cfit(ffun, coeff1,...,coeffn) constructs the cfit object cfun using the model
type specified by the fittype object ffun and the coefficient values coeff1, coeff2, etc.

Note cfit is called by the fit function when fitting fittype objects to data. To create a cfit
object that is the result of a regression, use fit.

You should only call cfit directly if you want to assign values to coefficients and problem parameters
of a fittype object without performing a fit.

Examples

Construct a cfit object from a fittype object

Create a fittype object and call the cfit function.

f = fittype('a*x^2+b*exp(n*x)')
c = cfit(f,1,10.3,-1e2)

f =
 General model:
 f(a,b,n,x) = a*x^2+b*exp(n*x)
c =
 General model:
 c(x) = a*x^2+b*exp(n*x)
 Coefficients:
 a = 1
 b = 10.3
 n = -100

Input Arguments
ffun — Model type
fittype (default)

Model type the cfit function uses to construct the cfit object, specified as a fittype constructed
with the fittype function.
Example: fittype('poly2')

 cfit

13-19

coeff1,...,coeffn — Coefficient values
scalar (default)

Coefficient values of the cfit object, specified as scalars.
Data Types: single | double

Output Arguments
cfun — cfit object
cfit

Function output, returned as a cfit object.

Version History
Introduced before R2006a

See Also
fit | fittype | feval

Topics
“Evaluate a Curve Fit” on page 7-16
“Fit Postprocessing”

13 Functions

13-20

chbpnt
Chebyshev-Demko points

Syntax
tau = chbpnt(t,k)
chbpnt(t,k,tol)
[tau,sp] = chbpnt(...)

Description
tau = chbpnt(t,k) are the extreme sites of the Chebyshev spline of order k with knot sequence
t. These are particularly good sites at which to interpolate data by splines of order k with knot
sequence t because the resulting interpolant is often quite close to the best uniform approximation
from that spline space to the function whose values at tau are being interpolated.

chbpnt(t,k,tol) also specifies the tolerance tol to be used in the iterative process that
constructs the Chebyshev spline. This process is terminated when the relative difference between the
absolutely largest and the absolutely smallest local extremum of the spline is smaller than tol. The
default value for tol is .001.

[tau,sp] = chbpnt(...) also returns, in sp, the Chebyshev spline.

Examples

Approximate Square Root Function

Create a knot sequence of ten zeros and ten ones using the augknt function.

k = 10;
t = augknt([0,1],k);

Create a vector of interpolation sites by calculating the Chebyshev-Demko points for the Chebyshev
spline of order 10 with knot sequence t.

sites = chbpnt(t,k);

Create a vector of interpolation points by evaluating the function sqrt at the Chebyshev-Demko
points. Use the function spapi to interpolate through the evaluated points with a tenth-order spline
from the knot sequence t. The knots in t indicate that the spline fit consists of a single polynomial
with boundaries at 0 and 1.

interpolationPoints = sqrt(sites);
sp = spapi(t,sites,interpolationPoints)

sp = struct with fields:
 form: 'B-'
 knots: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]
 coefs: [-1.7088e-16 0.8842 -0.7101 2.4484 -1.1869 1.9678 0.3331 0.9940 0.9349 1]
 number: 10

 chbpnt

13-21

 order: 10
 dim: 1

The structure sp contains the properties of the spline. The coefs field of sp is a vector of coefficients
for the polynomial that approximates the square root function in the interval [0,1].

Compare sp and the square root function by displaying them in the same plot.

x = linspace(0,1,1000);

plot(x,sqrt(x))
hold on
fnplt(sp,'-',0.75)
legend(["square root function" "spline"],Location="best")

The plot shows that the spline closely follows the square root function.

Algorithms
The Chebyshev spline for the given knot sequence and order is constructed iteratively, using the
Remez algorithm, using as initial guess the spline that takes alternately the values 1 and −1 at the
sequence aveknt(t,k). The example “Construct Chebyshev Spline” on page 12-156 gives a detailed
discussion of one version of the process as applied to a particular example.

13 Functions

13-22

See Also
aveknt

 chbpnt

13-23

coeffnames
Coefficient names of cfit, sfit, or fittype object

Syntax
coeffs = coeffnames(fun)

Description
coeffs = coeffnames(fun) returns the coefficient (parameter) names of the cfit, sfit, or
fittype object fun as an n-by-1 cell array of character vectors coeffs, where n =
numcoeffs(fun).

Examples
f = fittype('a*x^2+b*exp(n*x)');
ncoeffs = numcoeffs(f)
ncoeffs =
 3
coeffs = coeffnames(f)
coeffs =
 'a'
 'b'
 'n'

Version History
Introduced in R2006b

See Also
fittype | formula | numcoeffs | probnames | coeffvalues

13 Functions

13-24

coeffvalues
Coefficient values of cfit or sfit object

Syntax
coeffvals= coeffvalues(fun)

Description
coeffvals= coeffvalues(fun) returns the values of the coefficients, or parameters, of the cfit
or sfit object fun as a 1-by-n vector coeffvals, where n = numcoeffs(fun).

Examples

Obtain the Coefficient Values of a Quadratic Polynomial Curve

Load the data in the census.mat file and construct a fittype for a quadratic polynomial curve.

load census
f = fittype('poly2');

Obtain the coefficient names and the formula for the fittype object f.

coefficientNames = coeffnames(f)

coefficientNames = 3x1 cell
 {'p1'}
 {'p2'}
 {'p3'}

formula(f)

ans =
'p1*x^2 + p2*x + p3'

Fit the curve to the data and retrieve the coefficient values.

c = fit(cdate,pop,f);
coefficientValues = coeffvalues(c)

coefficientValues = 1×3
104 ×

 0.0000 -0.0024 2.1130

Input Arguments
fun — cfit or sfit object
cfit | sfit

 coeffvalues

13-25

Object of which you want to calculate the coefficients, specified as a cfit or sfit object.

Output Arguments
coeffvals — Coefficients values
scalar | vector

Values of the coefficients of the cfit or sfit object fun, returned as a scalar or vector.

Version History
Introduced before R2006a

See Also
coeffnames | confint | predint | probvalues | cfit | sfit

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-26

confint
Confidence intervals for fit coefficients of cfit or sfit object

Syntax
ci = confint(fitresult)
ci = confint(fitresult,level)

Description
ci = confint(fitresult) returns 95% confidence bounds ci on the coefficients associated with
the cfit or sfit object fitresult. fitresult must be an output from the fit function to contain
the necessary information for ci. ci is a 2-by-n array where n = numcoeffs(fitresult). The top
row of ci contains the lower bound for each coefficient; the bottom row contains the upper bound.

ci = confint(fitresult,level) returns confidence bounds at the confidence level specified by
level. level must be between 0 and 1. The default value of level is 0.95.

Examples

Obtain the Confidence Intervals for Fit Coefficients Using the confint Function

Load the data and call the fit function to obtain the fitresult information.

load census

fitresult = fit(cdate,pop,'poly2')

fitresult =

 Linear model Poly2:
 fitresult(x) = p1*x^2 + p2*x + p3
 Coefficients (with 95% confidence bounds):
 p1 = 0.006541 (0.006124, 0.006958)
 p2 = -23.51 (-25.09, -21.93)
 p3 = 2.113e+04 (1.964e+04, 2.262e+04)

To obtain the confidence intervals, call the confint function on fitresult.

ci = confint(fitresult,0.95)

ci =

 0.0061242 -25.086 19641
 0.0069581 -21.934 22618

 confint

13-27

fit and confint display the confidence bounds in slightly different formats.

Input Arguments
fitresult — Fit information for confidence bounds calculation
cfit | sfit

Fit information for confidence bounds calculation, specified as a cfit or sfit object. fitresult
must be an output from the fit function.

level — Confidence level
0.95 (default) | scalar value in the range (0,1)

Confidence level, specified as a scalar. This argument must be between 0 and 1
Data Types: single | double

Output Arguments
ci — Confidence intervals
matrix

Confidence bounds on the coefficients associated with the cfit or sfit object fitresult, returned
as a matrix.

Tips
To calculate confidence bounds, confint uses R-1 (the inverse R factor from QR decomposition of the
Jacobian), the degrees of freedom for error, and the root mean squared error. This information is
automatically returned by the fit function and contained within fitresult.

If coefficients are bounded and one or more of the estimates are at their bounds, those estimates are
regarded as fixed and do not have confidence bounds.

Note that you cannot calculate confidence bounds if category(fitresult) is 'spline' or
'interpolant'.

Version History
Introduced before R2006a

See Also
fit | predint

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-28

csape
Cubic spline interpolation with end conditions

Syntax
pp = csape(x,y)
pp = csape(x,y,conds)
pp = csape(x,[e1,y,e2],conds)
pp = csape({x1,...,xn}, ___)

Description
pp = csape(x,y) returns the cubic spline interpolation to the given data (x,y) in ppform form.
The function applies Lagrange end conditions to each end of the data, and matches the spline
endslopes to the slope of the cubic polynomial that fits the last four data points at each end. Data
values at the same site are averaged.

pp = csape(x,y,conds) uses the end conditions specified by conds.

pp = csape(x,[e1,y,e2],conds) uses the end conditions specified by conds and the values e1
and e2 for the left and right end condition values, respectively.

pp = csape({x1,...,xn}, ___) returns the cubic spline interpolation for gridded data using the
univariate mesh inputs x1,...,xn. In this case, y is an n+r-dimensional array, where r is the
dimensionality of each data value. conds is a cell array with n entries, which provides end conditions
for each of the n variables. In some cases, you must supply end conditions for end conditions. You can
use this syntax with any of the arguments in the previous syntaxes.

Examples

Use Customized End Conditions with csape

You can implement custom end conditions using the csape function. Suppose you want to enforce the
following condition at the leftmost endpoint, e =x(1)

λ(s) ≡ aDs(e) + bD2s(e) = c

for the given scalars a,b, and c. You can compute the cubic spine interpolation s as the sum of s1 (the
cubic spine interpolation of the given data using the default end conditions) and s0 (the cubic spine
interpolation of zero data using some nontrivial end conditions):

s = s1 +
c− λ(s1)

λ(s0) s0

The end conditions you specify in s0 do not have to be the final desired end conditions λ(s).

This example uses the titanium test data, a standard data set used in data fitting. Load the data using
the titanium function.

 csape

13-29

[x,y] = titanium;

Define the coefficients for λ(s).

a = -2;
b = -1;
c = 0;

The end condition applies to the leftmost end of the data set.

e = x(1);

Now, calculate the cubic spline interpolation of the data set without imposing the end conditions.

s1 = csape(x,y);

To calculate s0, use zero data of the same length as y with an additional set of nontrivial end
conditions.

yZero = zeros(1,length(y));

The 1-by-2 matrix conds sets the end conditions by specifying the spline derivatives to fix. This
example uses end conditions only on the left end of the data, so use conds to fix the first derivative at
the left end. At the right end, fix the value of the function itself.

conds = [1 0];

To specify the values to fix the function or its derivatives to, add them as additional values to the data
set for fitting - in this case, yZero. The first element specifies the value at the left end, while the last
element specifies the value at for the right end.

At the left end, fix the first derivative of the spline to have a value of 1. At the right end, fix the
function itself to be 0 (the original value of the final element of yZero). Concatenate these end
condition values at the respective ends of yZero and use csape to find the spline that fits the data
with these end condition values.

s0 = csape(x,[1 yZero 0],conds);

Calculate the fully fitted spline from that data by using the aforementioned expression for s. To do
this, calculate the values for λ0 = λ(s0) and λ1 = λ(s1) using the first and second derivatives of the
splines s0 and s1.

d1s1 = fnder(fnbrk(s1,1));
d2s1 = fnder(d1s1);
d1s0 = fnder(fnbrk(s0,1));
d2s0 = fnder(d1s0);

Calculate the derivatives of the first polynomial piece of the spline, as the end conditions apply to the
left end of the data only.

lam1 = a*fnval(d1s1, e) + b*fnval(d2s1,e);
lam0 = a*fnval(d1s0, e) + b*fnval(d2s0,e);

Now use λ1 and λ0 to calculate the final, fully fitted spline.

pp = fncmb(s0,(c-lam1)/lam0,s1);

Plot the spline to compare the results of the default fit and the end conditions.

13 Functions

13-30

fnplt(pp,[594, 632])
hold on
fnplt(s1,'b--',[594, 632])
plot(x,y,'ro','MarkerFaceColor','r')
hold off
axis([594, 632, 0.62, 0.655])
legend 'Desired end conditions' ...
'Default end-conditions' 'Data' ...
 Location SouthEast

The stationary point near the first data point shows that the end conditions are implemented in the
fit.

Fit Multivariate Data

Use csape to fit multivariate, vector-valued data. This example fits vector-valued data using different
end conditions for each independent variable.

First, define the data. For this example, define the 3-dimensional vectors v over a 2-dimensional field,
with clamped conditions or prescribed slopes in the x direction and periodic end conditions in the y
direction.

x = 0:4;
y = -2:2;

 csape

13-31

s2 = 1/sqrt(2);

v = zeros(3, 7, 5);
v(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];
v(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
v(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];

v is a 3-dimensional array with v(:,i+1,j) as the vector value at coordinate x(i),y(j). Two
additional entries in the x dimension specify the slope values: the data points v(:,1,j) and
v(:,7,j) provide the value of the first derivative along the lines x = 0 and x = 4 for the clamped
end conditions. In the y dimension, the periodic end conditions do not require any additional
specification.

Now, calculate the multivariate cubic spline interpolation using csape.

sph = csape({x,y},v,{'clamped','periodic'});

To plot the result, first evaluate the spline over a suitable interval.

values = fnval(sph,{0:.1:4,-2:.1:2});

surf(squeeze(values(1,:,:)), ...
squeeze(values(2,:,:)), squeeze(values(3,:,:)));

axis equal
axis off

13 Functions

13-32

You can also evaluate and plot the spline surface using the simple command fnplt(sph). Note that
v is a 3-dimensional array, and v(:,i+1,j) is the 3-vector to match at (x(i),y(j)), i=1:5,
j=1:5. Additionally, in accordance with conds{1} being 'clamped', size(v,2) is 7 (and not 5),
and the first and last entry of v(r,:,j) specify the end slope values.

Supply End Conditions for End Conditions

In some cases, you must supply end conditions of end conditions. In this bivariate example, you
reproduce the bicubic polynomial g(x,y) = x3y3 by complete bicubic interpolation. You then derive the
needed data, including end condition values, directly from g to make it easier to see how the end
condition values must be placed. Finally, you check the result.

sites = {[0 1],[0 2]}; coefs = zeros(4, 4); coefs(1,1) = 1;
g = ppmak(sites,coefs);
Dxg = fnval(fnder(g,[1 0]),sites);
Dyg = fnval(fnder(g,[0 1]),sites);
Dxyg = fnval(fnder(g,[1 1]),sites);

f = csape(sites,[Dxyg(1,1), Dxg(1,:), Dxyg(1,2); ...
 Dyg(:,1), fnval(g,sites), Dyg(:,2) ; ...
 Dxyg(2,1), Dxg(2,:), Dxyg(2,2)], ...
 {'complete','complete'});
if any(squeeze(fnbrk(f,'c'))-coefs)
 disp('this is wrong')
end

Input Arguments
x — Data sites
vector | cell array

Data sites of data values y to fit, specified as a vector or as a cell array for multivariate data. The
function creates spline s knots at each data site x such that s(x(j)) = y(:,j) for all j.

For multivariate, gridded data, specify x as a cell array that provides the data site in each variable
dimension, such that s(x1(i),x2(j),...,xn(k)) = y(:,i,j,...,k).
Data Types: single | double

y — Data values to fit
vector | matrix | array

Data values to fit during creation of the spline, specified as a vector, matrix, or array. You can specify
the data values y(:,j) as scalars, matrices, or n-dimensional arrays. Data values given at the same
data site x are averaged.
Data Types: single | double

conds — End conditions
'clamped' | 'complete' | 'not-a-knot' | 'periodic' | 'second' | 'variational' | 1-by-2
matrix

End conditions for the spline, specified as 'complete' or 'clamped', 'not-a-knot',
'periodic', 'second', 'variational', or as a 1-by-2 matrix. The predefined options for conds

 csape

13-33

impose identical end conditions at each end of the data. You can specify different end conditions at
each end by supplying conds as a 1-by-2 matrix.

The available predefined end conditions are as follows.

'complete' or
'clamped'

Match the endslopes to the given values e1 and e2. If you do not provide
values for e1 and e2, this option matches the default Lagrangian end
conditions.

'not-a-knot' Make the second and second-last sites inactive knots. This option ignores
any values you provide for e1 and e2.

'periodic' Match the first and second derivatives at the left end with those at the
right end.

'second' Match the end second derivatives to the given values e1 and e2. If you
do not provide values e1 and e2, this option uses the default value of 0
for both. With the default values, this option is the same as
'variational'.

'variational' Set the end second derivatives equal to zero. This option ignores any
values you provide for e1 and e2.

To specify different end conditions at each end, supply conds as a 1-by-2 matrix. The elements of this
matrix elements specify the order of the spline derivative fixed by the end conditions. Setting
conds(j) = i fixes the ith derivative Dis to an end condition value.

The default end condition value is the derivative of the cubic interpolant at the left four sites when
conds(1) = 1 and is 0 otherwise. Set end condition values for the left and right sides of the data by
specifying e1 and e2, respectively.

You can specify the value of conds(j) as 0, 1, or 2. If you specify a different value or do not specify
conds(j), then conds(j) is 1 and the corresponding end condition value is the default value.

The following pre-defined end conditions are available.

clamped Ds(e) = ej if conds(j) == 1
curved D2s(e) = ej if conds(j) == 2
periodic Drs(a) = Drs(b), r = 1,2 if conds == [0 0]
variational D2s(e) = 0 if conds(j) == 2 & ej == 0

e, a, and b refer to the left or right data locations; ej is e1 for the left end of the data and e2 for the
right end of the data.

You can supply the optional end condition values e1 and e2 whether you use predefined or user-
defined options for conds. However, note that some predefined options for conds ignore any end
condition values you provide.
Example: 'clamped', [1 0]

e1 — Left end condition value
scalar

Left end condition value for the spline, specified as a scalar value. e1 specifies the value for the ith
derivative at the left end of the data, where conds provides i. Even if you use different end conditions

13 Functions

13-34

at the two ends, if you supply an end condition value at one end you must also supply one for the
other end.

Note that some predefined options for conds ignore any end condition values you provide.

The default value for e1 is the derivative of the cubic interpolant at the left four sites when
conds(1) = 1 and is 0 otherwise.
Data Types: single | double

e2 — Right end condition value
scalar

Right end condition value for the spline, specified as a scalar value. e2 specifies the value for the ith
derivative at the right end of the data, where conds provides i. Even if you use different end
conditions at the two ends, if you supply an end condition value at one end you must also supply one
for the other end.

Note that some predefined options for conds ignore any end condition values you provide.

The default value for e2 is the derivative of the cubic interpolant at the right four sites when
conds(2) = 1 and is 0 otherwise.
Data Types: single | double

Output Arguments
pp — Spline in ppform
spline structure

Spline in ppform, returned as a structure with these fields.

Form — Form of spline
pp

Form of the spline, returned as pp. pp indicates that the spline is given in piecewise polynomial form.

Breaks — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Pieces — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

 csape

13-35

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

Algorithms
The relevant tridiagonal linear system is constructed and solved using the sparse matrix capabilities
of MATLAB.

The csape command calls on a much expanded version of the Fortran routine CUBSPL in PGS.

Version History
Introduced before R2006a

See Also
csapi | spapi | spline

13 Functions

13-36

csapi
Cubic spline interpolation

Syntax
pp = csapi(x,y)
values = csapi(x,y,xx)

Description

Note For a simpler but less flexible method to interpolate cubic splines, try the Curve Fitter app or
the fit function and see “About Smoothing Splines” on page 6-14.

pp = csapi(x,y) returns the ppform of a cubic spline s with knot sequence x that takes the values
y(:,j) at x(j) for j=1:length(x). The values y(:,j) can be scalars, vectors, matrices, and ND-
arrays. The function averages the data points with the same data site and then sorts them by their
sites. With x the resulting sorted data sites, the spline s satisfies the not-a-knot end conditions, such
as

jumpx(2)Ds
3 = 0 = jumpx(end− 1)D3(s)

where D3s is the third derivative of s.

If x is a cell array of sequences x1, ..., xm of lengths n1, ..., nm, then y is an array of size
[n1,...,nm] (or of size [d,n1,...,nm] if the interpolant is d-valued). In that case, pp is the
ppform of an m-cubic spline interpolant s to such data. In particular,

s x(i1),⋯, x(im) = y : , i1, …, im

with i1 = 1:nl and im = 1:nm.

To perform operations on this interpolating cubic spline, such as evaluation, differentiation, plotting,
use the pp structure. For more information, see the fnval, fnder, fnplt functions.

values = csapi(x,y,xx) returns the values of the smoothing spline evaluated at the points xx.
This syntax is the same as fnval(csapi(x,y),xx).

This command is essentially the MATLAB function spline, which, in turn, is a stripped-down version
of the Fortran routine CUBSPL in PGS, except that csapi (and now also spline) accepts vector-
valued data and can handle gridded data.

Examples

Interpolant to Two, Three, and Five Points

This example shows how to use the csapi command from Curve Fitting Toolbox™ to construct cubic
spline interpolants.

 csapi

13-37

Interpolant to Two Points

The command

values = csapi(x,y,xx)

returns the values at xx of the cubic spline interpolant to the given data (x,y), using the not-a-knot
end condition. This interpolant is a piecewise cubic function with break sequence x, whose cubic
pieces join together to form a function with two continuous derivatives. The "not-a-knot" end
condition means that, at the first and last interior break, even the third derivative is continuous (up to
round-off error).

Specifying only two data points results in a straight line interpolant.

x = [0 1];
y = [2 0];
xx = linspace(0,6,121);
plot(xx,csapi(x,y,xx),'k-',x,y,'ro')
title('Interpolant to Two Points')

Interpolant to Three Points

If you specify three data points, the function outputs a parabola.

x = [2 3 5];
y = [1 0 4];
plot(xx,csapi(x,y,xx),'k-',x,y,'ro')
title('Interpolant to Three Points')

13 Functions

13-38

Interpolant to Five Points

More generally, if you specify four or five data points, the function outputs a cubic spline.

x = [1 1.5 2 4.1 5];
y = [1 -1 1 -1 1];
plot(xx,csapi(x,y,xx),'k-',x,y,'ro')
title('Cubic Spline Interpolant to Five Points')

 csapi

13-39

Plot Bicubic Spline Interpolant to Ricker Wavelet

Up to rounding errors, and assuming that x is a vector with at least four entries, the statement pp =
csapi(x,y) puts the same spline into pp as the following statement, except that the description of
the spline obtained this second way does not use breaks at x(2) and x(n-1):

pp = fn2fm(spapi(augknt(x([1 3:(end-2) end]),4),x,y),"pp");

As a simple bivariate example, plot a bicubic spline interpolant to a Ricker wavelet.

x =.0001 + (-4:.2:4);
y = -3:.2:3;
[yy,xx] = meshgrid(y,x);
r = pi*sqrt(xx.^2+yy.^2);
z = sin(r)./r;
bcs = csapi({x,y},z);
fnplt(bcs)
axis([-5 5 -5 5 -.5 1])

13 Functions

13-40

Since MATLAB® considers the entry z(i,j) as the value at (x(j),y(i)), the code reverses x and y
in the call to meshgrid. The Curve Fitting Toolbox® instead follows the Approximation Theory
standard whereas z(i,j) is the value at (x(i),y(j)).

For this reason, you have to be cautious when you are plotting values of such a bivariate spline with
the aid of the MATLAB mesh function, as shown here:

xf = linspace(x(1),x(end),41);
yf = linspace(y(1),y(end),41);
mesh(xf,yf,fnval(bcs,{xf,yf}).')

 csapi

13-41

Note the use of the transpose of the matrix of values obtained from fnval.

Input Arguments
x — Data sites
vector | cell array

Data sites of data values y to be fit, specified as a vector or as a cell array for multivariate data.
Spline f is created with knots at each data site x such that f(x(j)) = y(:,j) for all values of j.

For multivariate, gridded data, you can specify x as a cell array that specifies the data site in each
variable dimension: f(x1(i),x2(j),...xn(k)) = y(:,i,j,...,k).
Data Types: single | double

y — Data values to fit
vector | matrix | array

Data values to fit during creation of the spline, specified as a vector, matrix, or array. Data values
y(:,j) can be scalars, matrices, or n-dimensional arrays. Data values given at the same data site x
are averaged.
Data Types: single | double

xx — Evaluation points
vector | cell array

13 Functions

13-42

Evaluation points over which the spline is evaluated, specified as a vector or as a cell array of vectors
for multivariate data. Spline evaluation is performed using fnval.
Data Types: single | double

Output Arguments
pp — Spline in ppform
spline structure

Spline in ppform, returned as a structure with these fields. For more information on ppform, see The
ppform on page 10-8.

Form — Form of spline
pp

Form of the spline, returned as pp. pp indicates that the spline is given in piecewise polynomial form.

Breaks — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Pieces — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

values — Evaluated spline
vector | matrix | array

Evaluated spline, returned as a vector or as a matrix or array for multivariate data. The spline is
evaluated at the given evaluation points xx.

 csapi

13-43

Algorithms
csapi is an implementation of the Fortran routine CUBSPL from PGS.

The algorithm constructs and solves the relevant tridiagonal linear system using the MATLAB sparse
matrix capability.

The algorithm also uses the not-a-knot end condition, forcing the first and second polynomial piece of
the interpolant to coincide, as well as the second-to-last and the last polynomial piece.

Version History
Introduced in R2006b

See Also
csape | spapi | spline

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-44

csaps
Cubic smoothing spline

Syntax
pp = csaps(x,y)
pp = csaps(x,y,p)
pp = csaps(x,y,p,[],w)
values = csaps(x,y,p,xx)
values = csaps(x,y,p,xx,w)
[___] = csaps({x1,...,xm},y, ___)
[___ ,P] = csaps(___)

Description

Note For a simpler but less flexible method to generate smoothing splines, try the Curve Fitter app
or the fit function.

pp = csaps(x,y) returns the cubic smoothing spline interpolation to the given data (x,y) in
ppform. The value of spline f at data site x(j) approximates the data value y(:,j) for j =
1:length(x).

The smoothing spline f minimizes

p ∑
j = 1

n
w j y j− f (x j)

2

︸
error measure

+ (1− p)∫λ(t) D2f (t)
2
dt

︸
roughness measure

Here, n is the number of entries of x and the integral is over the smallest interval containing all the
entries of x. yj and xj refer to the jth entries of y and x, respectively. D2f denotes the second derivative
of the function f.

The default values for the error measure weights wj are 1. The default value for the piecewise
constant weight function λ in the roughness measure is the constant function 1. By default, csaps
chooses a value for the smoothing parameter p based on the given data sites x.

To evaluate a smoothing spline outside its basic interval, you must first extrapolate it. Use the
command pp = fnxtr(pp) to ensure that the second derivative is zero outside the interval spanned
by the data sites.

pp = csaps(x,y,p) specifies the smoothing parameter p. You can also supply the roughness
measure weights λ by providing p as a vector whose first entry is p and ith entry is the value of λ on
the interval (x(i-1),x(i)).

pp = csaps(x,y,p,[],w) also specifies the weights w in the error measure.

values = csaps(x,y,p,xx) uses the smoothing parameter p and returns the values of the
smoothing spline evaluated at the points xx. This syntax is the same as fnval(csaps(x,y,p),xx).

 csaps

13-45

values = csaps(x,y,p,xx,w) uses the smoothing parameter p and the error measure weights w,
and returns the values of the smoothing spline evaluated at the points xx. This syntax is the same as
fnval(csaps(x,y,p,[],w),xx)

[___] = csaps({x1,...,xm},y, ___) provides the ppform of an m-variate tensor-product
smoothing spline to data on the rectangular grid described by {x1,...,xm}. You can use this syntax
with any of the arguments in the previous syntaxes.

[___ ,P] = csaps(___) also returns the value of the smoothing parameter used in the final
spline result whether or not you specify p. This syntax is useful for experimentation in which you can
start with [pp,P] = csaps(x,y) and obtain a reasonable first guess for p.

Examples

Fit Splines with Different Smoothing Parameters

Fit smoothing splines using the csaps function with different values for the smoothing parameter p.
Use values of p between the extremes of 0 and 1 to see how they affect the shape and closeness of
the fitted spline.

Load the titanium data set.

[x, y] = titanium();

When p = 0, s0 is the least-squares straight line fit to the data. When p = 1, s1 is the variational,
or natural, cubic spline interpolant.

For 0 < p < 1, sp is a smoothing spline that is a trade-off between the two extremes: smoother than
the interpolant s1 and closer to the data than the straight line s0.

p = 0.00009;

s0 = csaps(x,y,0);
sp = csaps(x,y,p);
s1 = csaps(x,y,1);

figure
fnplt(s0);
hold on
fnplt(sp);
fnplt(s1);
plot(x,y,'ko');
hold off
title('Smoothing splines with different values for p');
legend('p = 0', ['p = ' num2str(p)], 'p = 1', 'Location', 'northwest')

13 Functions

13-46

Adjust Smoothing Parameters and Weights

Adjust the smoothing parameter, error measure weights, and roughness measure weights.

Create a sine curve with noise.

x = linspace(0,2*pi,21); y = sin(x)+(rand(1,21)-.5)*.3;

Fit a smoothing spline to the data. Specify the smoothing parameter p = 0.4 and error measure
weights w that vary across the data.

pp = csaps(x,y,0.4,[],[ones(1,10),repmat(5,1,10), 0]);

The function returns a smooth fit to the noisy data that is much closer to the data in the right half
because of the much larger error measure weight there. Note that the error weighting of zero for the
last data point excludes this point from the fit.

Now fit a smoothing spline using the same data, smoothing parameter and error measure weights,
but with adjusted roughness measure weights.

pp1 = csaps(x,y, [.4,ones(1,10),repmat(.2,1,10)], [], ...
 [ones(1,10), repmat(5,1,10), 0]);

The roughness measure weight is only 0.2 in the right half of the interval. Correspondingly, the fit is
rougher but closer on the right side of the data (except for the last data point, which is ignored).

 csaps

13-47

Plot both fits for comparison.

figure
hold on
fnplt(pp, 'b');
fnplt(pp1,'r--')
plot(x,y,'ok')
hold off
ylim([-1.5 1.5])
title(['Cubic smoothing spline, with right half treated ',...
 'differently'])
legend('Larger error weight', 'Larger error and smaller roughness weight')

Smooth Bivariate Data

Fit a smoothing spline to bivariate data generated by the peaks function with added uniform noise.
Use csaps to obtain the new, smoothed data points and the smoothing parameters csaps determines
for the fit.

Create the grid. For this example, the grid is a 51-by-61 uniform grid.

x = {linspace(-2,3,51),linspace(-3,3,61)};
[xx,yy] = ndgrid(x{1},x{2});

Generate the noisy data using the peaks function and random numbers in the interval − 1
2, 1

2 .

y = peaks(xx, yy);
noisy = y + (rand(size(y)) - 0.5);
figure
surf(xx,yy,noisy)
axis off

13 Functions

13-48

Fit the data. Use csaps to obtain the smoothed data values evaluated over the grid x and the default
smoothing parameter used in the fit.

[sval,p] = csaps(x,noisy,[],x);

The plot of the fit shows that some roughness remains. Note that you must transpose the array sval.

figure
surf(x{1},x{2},sval.')
axis off

 csaps

13-49

For a somewhat smoother approximation, specify a value for p that is slightly smaller than the csaps
default value.

ssval = csaps(x,noisy,.996,x);
figure
surf(x{1},x{2},ssval.')
axis off

13 Functions

13-50

Input Arguments
x — Data sites
vector | cell array

Data sites of data values y to be fit, specified as a vector or as a cell array for multivariate data.
Spline f is created with knots at each data site x such that f(x(j)) = y(:,j) for all values of j.

For multivariate, gridded data, you can specify x as a cell array that specifies the data site in each
variable dimension: f(x1(i),x2(j),...xn(k)) = y(:,i,j,...,k).
Data Types: single | double

y — Data values to fit
vector | matrix | array

Data values to fit during creation of the spline, specified as a vector, matrix, or array. Data values
y(:,j) can be scalars, matrices, or n-dimensional arrays. Data values given at the same data site x
are averaged.
Data Types: single | double

p — Smoothing parameter
scalar in the range [0,1] | vector | cell array | empty array

 csaps

13-51

Smoothing parameter, specified as a scalar value between 0 and 1 or as a cell array of values for
multivariate data. You can also specify values for the roughness measure weights λ by providing p as
a vector. To provide roughness measure weights for multivariate data, use a cell array of vectors. If
you provide an empty array, the function chooses a default value for p based on the data sites x and
the default value of 1 for the roughness measure weight λ.

The smoothing parameter determines the relative weight to place on the contradictory demands of
having f be smooth or having f be close to the data. For p = 0, f is the least-squares straight-line fit to
the data. For p = 1, f is the variational, or natural, cubic spline interpolant. As p moves from 0 to 1,
the smoothing spline changes from one extreme to the other.

The favorable range for p is often near 1/(1 + h3/6), where h is the average spacing of the data sites.
The function chooses a default value for p within this range. For uniformly spaced data, you can
expect a close fit with p = 1(1 + h3/60) and some satisfactory smoothing with p = 1/(1 + h3/0.6). You
can input p > 1, but this choice leads to a smoothing spline even rougher than the variational cubic
spline interpolant.

If the input p is negative or empty, then the function uses the default value for p.

You can specify the roughness measure weights λ alongside the smoothing parameter by providing p
as a vector. This vector must be the same size as x, with the ith entry the value of λ on the interval
(x(i-1)...x(i)), for i = 2:length(x). The first entry of the input vector p is the desired value
of the smoothness parameter p. By providing roughness measure weights, you can make the resulting
smoothing spline smoother (with larger weight values) or closer to the data (with smaller weight
values) in different parts of the interval. Roughness measure weights must be nonnegative.

If you have difficulty choosing p but have some feeling for the size of the noise in y, consider using
spaps(x,y,tol) instead. This function chooses p such that the roughness measure is as small as
possible, subject to the condition that the error measure does not exceed tol. In this case, the error
measure usually equals the specified value for tol.
Data Types: single | double

w — Error measure weights
vector | cell array

Error measure weights w in the error measure, specified as a vector of nonnegative entries of the
same size as x.

The default value for the weight vector w in the error measure is ones(size(x)).

xx — Evaluation points
vector | cell array

Evaluation points over which the spline is evaluated, specified as a vector or as a cell array of vectors
for multivariate data. Spline evaluation is performed using fnval.
Data Types: single | double

Output Arguments
pp — Spline in ppform
spline structure

Spline in ppform, returned as a structure with these fields.

13 Functions

13-52

Form — Form of spline
pp

Form of the spline, returned as pp. pp indicates that the spline is given in piecewise polynomial form.

Breaks — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Pieces — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

values — Evaluated spline
vector | matrix | array

Evaluated spline, returned as a vector or as a matrix or array for multivariate data. The spline is
evaluated at the given evaluation points xx.

P — Smoothing parameter
scalar | cell array

Smoothing parameter used to calculate the spline, returned as a scalar or as a cell array of scalar
values for multivariate data. P is between 0 and 1.

Algorithms
csaps is an implementation of the Fortran routine SMOOTH from PGS.

The calculation of the smoothing spline requires solving a linear system whose coefficient matrix has
the form p*A + (1-p)*B, with the matrices A and B depending on the data sites x. The default value
of p makes p*trace(A) equal (1-p)*trace(B).

 csaps

13-53

Version History
Introduced before R2006a

See Also
spap2 | spaps | tpaps

13 Functions

13-54

cscvn
“Natural” or periodic interpolating cubic spline curve

Syntax
curve = cscvn(points)

Description
curve = cscvn(points) returns a parametric variational, or natural, cubic spline curve (in
ppform) passing through the given sequence points (:j), j = 1:end. The parameter value t(j) for the j-th
point follows the Eugene Lee's [1] centripetal scheme, as accumulated square root of chord length:

∑
i < j

points(: , i + 1)− points (: , i) 2

If the first and last point coincide and there are no other repeated points) then the function
constructs a periodic cubic spline curve. However, double points result in corners.

Examples

Plot Interpolating Cubic Spline Curves

This example shows how to construct and plot several different interpolating cubic spline curves
using the cscvn function.

This code generates a sequence of points and then plots the cubic spline generated from the cscvn
function. The chosen points are marked as circles:

points=[0 1 1 0 -1 -1 0 0; 0 0 1 2 1 0 -1 -2];
fnplt(cscvn(points)); hold on,
plot(points(1,:),points(2,:),'o'), hold off

 cscvn

13-55

This code plots a circular curve through the four vertices of the standard diamond (because of the
periodic boundary conditions enforced):

 fnplt(cscvn([1 0 -1 0 1;0 1 0 -1 0]))

13 Functions

13-56

This code shows a corner at the double point as well as at the curve endpoint:

 fnplt(cscvn([1 0 -1 -1 0 1;0 1 0 0 -1 0]))

 cscvn

13-57

Finally, this code generates a closed curve with one double point, which results in a corner. Dedicate
this to your loved ones.

c=fnplt(cscvn([0 .82 .92 0 0 -.92 -.82 0; .66 .9 0 ...
-.83 -.83 0 .9 .66])); fill(c(1,:),c(2,:),'r'), axis equal

13 Functions

13-58

Input Arguments
points — Sequence of points
scalar | vector | matrix

Sequence of points at which the parametric "natural" cubic spline interpolates to, specified as a
scalar, vector, or matrix.

Output Arguments
curve — Spline in ppform
spline structure

Spline in ppform, returned as a structure with these fields.

Form — Form of spline
pp

Form of the spline, returned as pp. pp indicates that the spline is given in piecewise polynomial form.

Breaks — Knot locations of spline
vector | cell array

 cscvn

13-59

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Pieces — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

Algorithms
The function determines the break sequence t as

t = cumsum([0;((diff(points.').^2)*ones(d,1)).^(1/4)]).';

and uses csape (with either periodic or variational end conditions) to construct the smooth pieces
between double points (if any).

Version History
Introduced in R2006b

References
[1] E. T. Y. Lee. “Choosing nodes in parametric curve interpolation.” Computer-Aided Design 21

(1989), 363–370.

See Also
csape | fnplt | getcurve

Topics
“Introducing Spline Fitting” on page 8-2
“The ppform” on page 10-8

13 Functions

13-60

datastats
Data statistics

Syntax
xds = datastats(x)
[xds,yds] = datastats(x,y)

Description
xds = datastats(x) returns statistics for the column vector x to the structure xds. Fields in xds
are listed in the table below.

Field Description
num The number of data values
max The maximum data value
min The minimum data value
mean The mean value of the data
median The median value of the data
range The range of the data
std The standard deviation of the data

[xds,yds] = datastats(x,y) returns statistics for the column vectors x and y to the structures
xds and yds, respectively. xds and yds contain the fields listed in the table above. x and y must be
of the same size.

Examples
Compute statistics for the census data in census.mat:

load census
[xds,yds] = datastats(cdate,pop)
xds =
 num: 21
 max: 1990
 min: 1790
 mean: 1890
 median: 1890
 range: 200
 std: 62.048
yds =
 num: 21
 max: 248.7
 min: 3.9
 mean: 85.729
 median: 62.9
 range: 244.8
 std: 78.601

 datastats

13-61

Tips
If x or y contains complex values, only the real parts are used in computing the statistics. Data
containing Inf or NaN are processed using the usual MATLAB rules.

Version History
Introduced before R2006a

See Also
excludedata | smooth

13 Functions

13-62

dependnames
Dependent variable of cfit, sfit, or fittype object

Syntax
dep = dependnames(fun)

Description
dep = dependnames(fun) returns the (single) dependent variable name of the cfit, sfit, or
fittype object fun as a 1-by-1 cell array of character vectors dep.

Examples
f1 = fittype('a*x^2+b*exp(n*x)');
dep1 = dependnames(f1)
dep1 =
 'y'

f2 = fittype('a*x^2+b*exp(n*x)','dependent','power');
dep2 = dependnames(f2)
dep2 =
 'power'

Version History
Introduced in R2006b

See Also
indepnames | fittype | formula

 dependnames

13-63

differentiate
Differentiate cfit or sfit object

Syntax
fx = differentiate(FO, X)
[fx, fxx] = differentiate(FO, X)
[fx, fy] = differentiate(FO, X, Y)
[fx, fy] = differentiate(FO, [X, Y])
[fx, fy, fxx, fxy, fyy] = differentiate(FO, ...)

Description

Note Use these syntaxes for cfit objects.

fx = differentiate(FO, X) differentiates the cfit object FO at the points specified by the
vector X and returns the result in fx.

[fx, fxx] = differentiate(FO, X) differentiates the cfit object FO at the points specified by
the vector X and returns the result in fx and the second derivative in fxx.

Note Use these syntaxes for sfit objects.

[fx, fy] = differentiate(FO, X, Y) differentiates the surface FO at the points specified by X
and Y and returns the result in fx and fy.

FO is a surface fit (sfit) object generated by the fit function.

X and Y must be double-precision arrays and the same size and shape as each other.

All return arguments are the same size and shape as X and Y.

If FO represents the surface z = f (x, y), then FX contains the derivatives with respect to x, that is, df
dx ,

and FY contains the derivatives with respect to y, that is, df
dy .

[fx, fy] = differentiate(FO, [X, Y]), where X and Y are column vectors, allows you to
specify the evaluation points as a single argument.

[fx, fy, fxx, fxy, fyy] = differentiate(FO, ...) computes the first and second
derivatives of the surface fit object FO.

fxx contains the second derivatives with respect to x, that is, ∂
2 f
∂x2 .

fxy contains the mixed second derivatives, that is, ∂
2 f

∂x∂y .

13 Functions

13-64

fyy contains the second derivatives with respect to y, that is, ∂
2 f
∂y2 .

Examples

Find the Derivatives of a Curve Using the differentiate Function

Create a baseline sinusoidal signal.

xdata = (0:.1:2*pi)';
y0 = sin(xdata);

Add response-dependent Gaussian noise to the signal.

noise = 2*y0.*randn(size(y0));
ydata = y0 + noise;

Fit the noisy data with a custom sinusoidal model.

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Find the derivatives of the fit at the predictors.

[d1,d2] = differentiate(fit1,xdata);

Plot the data, the fit, and the derivatives.

subplot(3,1,1)
plot(fit1,xdata,ydata) % cfit plot method
subplot(3,1,2)
plot(xdata,d1,'m') % double plot method
grid on
legend('1st derivative')
subplot(3,1,3)
plot(xdata,d2,'c') % double plot method
grid on
legend('2nd derivative')

 differentiate

13-65

You can also compute and plot derivatives directly with the cfit plot method, as follows:

figure
plot(fit1,xdata,ydata,{'fit','deriv1','deriv2'})

13 Functions

13-66

The plot method, however, does not return data on the derivatives, unlike the differentiate
method.

Find the Derivatives of a Surface Using the differentiate Function

You can use the differentiate method to compute the gradients of a fit and then use the quiver
function to plot these gradients as arrows. This example plots the gradients over the top of a contour
plot.

Create the derivation points and fit the data.

x = [0.64;0.95;0.21;0.71;0.24;0.12;0.61;0.45;0.46;...
0.66;0.77;0.35;0.66];
y = [0.42;0.84;0.83;0.26;0.61;0.58;0.54;0.87;0.26;...
0.32;0.12;0.94;0.65];
z = [0.49;0.051;0.27;0.59;0.35;0.41;0.3;0.084;0.6;...
0.58;0.37;0.19;0.19];
fo = fit([x, y], z, 'poly32', 'normalize', 'on');
[xx, yy] = meshgrid(0:0.04:1, 0:0.05:1);

Compute the gradients of the fit using the differentiate function.

[fx, fy] = differentiate(fo, xx, yy);

Use the quiver function to plot the gradients.

 differentiate

13-67

plot(fo, 'Style', 'Contour');
hold on
h = quiver(xx, yy, fx, fy, 'r', 'LineWidth', 2);
hold off
colormap(copper)

If you want to use derivatives in an optimization, you can, for example, implement an objective
function for fmincon as follows.

function [z, g, H] = objectiveWithHessian(xy)

% The input xy represents a single evaluation point

z = f(xy);

if nargout > 1

[fx, fy, fxx, fxy, fyy] = differentiate(f, xy);

g = [fx, fy];

H = [fxx, fxy; fxy, fyy];

end

end

13 Functions

13-68

Input Arguments
FO — cfit function
cfit | sfit

Function to differentiate, specified as a cfit object for curves or as a sfit object for surfaces.

X — Differentiation points
array

Points at which to differentiate the function, specified as a vector. For surfaces, this argument must
have the same size and shape of Y.

Y — Differentiation points
array

Points at which to differentiate the function, specified as a vector. For surfaces, this argument must
have the same size and shape of X.

Output Arguments
fx — First derivative with respect to x
vector

First derivative of the function, returned as a vector of the same size and shape of X and Y.

If FO is a surface, z = f (x, y), then fx contains the derivatives with respect to x.

fxx — Second derivative with respect to x
vector

Second derivative of the function, returned as a vector of the same size and shape of X and Y.

If FO is a surface, z = f (x, y), then fxx contains the second derivatives with respect to x.

fy — First derivative with respect to y
vector

First derivative of the function, returned as a vector of the same size and shape of X and Y.

If FO is a surface, z = f (x, y), then fy contains the derivatives with respect to y.

fyy — Second derivative with respect to y
vector

Second derivative of the function, returned as a vector of the same size and shape of X and Y.

If FO is a surface, z = f (x, y), then fyy contains the second derivatives with respect to y.

fxy — Mixed second derivative
vector

Mixed second derivative of the function, returned as a vector of the same size and shape of X and Y.

 differentiate

13-69

Tips
For library models with closed forms, the toolbox calculates derivatives analytically. For all other
models, the toolbox calculates the first derivative using the centered difference quotient

df
dx = f (x + Δx)− f (x− Δx)

2Δx

where x is the value at which the toolbox calculates the derivative, Δx is a small number (on the order
of the cube root of eps), f (x + Δx) is fun evaluated at x + Δx, and f (x− xΔ) is fun evaluated at
x− Δx.

The toolbox calculates the second derivative using the expression

d2f
dx2 = f (x + Δx) + f (x− Δx)− 2f (x)

(Δx)2

The toolbox calculates the mixed derivative for surfaces using the expression

∂2 f
∂x∂y (x, y) = f (x + Δx, y + Δy)− f (x− Δx, y + Δy)− f (x + Δx, y − Δy) + f (x− Δx, y − Δy)

4ΔxΔy

Version History
Introduced before R2006a

See Also
fit | plot | integrate

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-70

excludedata
Exclude data from fit

Syntax
tf = excludedata(x,y,'box',box)
tf = excludedata(x,y,'domain',domain)
tf = excludedata(x,y,'range',range)
tf = excludedata(x,y,'indices',indices)

Description
tf = excludedata(x,y,'box',box) returns a logical array that indicates which elements are
outside the box in the xy-plane specified by box. The elements of tf equal 1 for data points outside
the box and 0 for data points inside the box. To exclude data when fitting a curve using fit, specify
tf as the 'Exclude' value.

tf = excludedata(x,y,'domain',domain) identifies data points that have x-values outside the
interval domain.

tf = excludedata(x,y,'range',range) identifies the data points with y-values outside the
interval range.

tf = excludedata(x,y,'indices',indices) identifies the data points with indices equal to
indices.

Examples

Visualize Exclusion Rules

Visualize exclusion rules using random data.

Generate random x and y data.

xdata = -3 + 6*rand(1,1e4);
ydata = -3 + 6*rand(1,1e4);

As an example, exclude data that is either inside the box [-1 1 -1 1] or outside the domain [-2
2].

outliers1 = ~excludedata(xdata,ydata,'box',[-1 1 -1 1]);
outliers2 = excludedata(xdata,ydata,'domain',[-2 2]);
outliers = outliers1|outliers2;

Plot the data that is not excluded. The white area corresponds to regions that are excluded.

plot(xdata(~outliers),ydata(~outliers),'.')
axis([-3 3 -3 3])
axis square

 excludedata

13-71

Exclude Data from Curve Fit

Load the vote counts and county names for the state of Florida from the 2000 U.S. presidential
election.

load flvote2k

Use the vote counts for the two major party candidates, Bush and Gore, as predictors for the vote
counts for the third-party candidate Buchanan, and plot the scatters:

plot(bush,buchanan,'rs')
hold on
plot(gore,buchanan,'bo')
legend('Bush data','Gore data')

13 Functions

13-72

Assume a model where a fixed proportion of Bush or Gore voters choose to vote for Buchanan.

f = fittype({'x'})

f =
 Linear model:
 f(a,x) = a*x

Exclude the data from absentee voters, who did not use the controversial “butterfly” ballot.

nobutterfly = strcmp(counties,'Absentee Ballots');

Perform a bisquare weights robust fit of the model to the two data sets, excluding absentee voters.

bushfit = fit(bush,buchanan,f,'Exclude',nobutterfly,'Robust','on');
gorefit = fit(gore,buchanan,f,'Exclude',nobutterfly,'Robust','on');

Robust fits give outliers a low weight, so large residuals from a robust fit can be used to identify the
outliers.

figure
plot(bushfit,bush,buchanan,'rs','residuals')
hold on
plot(gorefit,gore,buchanan,'bo','residuals')

 excludedata

13-73

Calculate the residuals.

bushres = buchanan - feval(bushfit,bush);
goreres = buchanan - feval(gorefit,gore);

Identify large residuals as those outside the range [-500 500].

bushoutliers = excludedata(bush,bushres,'range',[-500 500]);
goreoutliers = excludedata(gore,goreres,'range',[-500 500]);

Display the counties corresponding to the outliers. Miami-Dade and Broward counties correspond to
the largest predictor values. Palm Beach county, the only county in the state to use the “butterfly”
ballot, corresponds to the largest residual values.

counties(bushoutliers)

ans = 2x1 cell
 {'Miami-Dade'}
 {'Palm Beach'}

counties(goreoutliers)

ans = 3x1 cell
 {'Broward' }
 {'Miami-Dade'}
 {'Palm Beach'}

13 Functions

13-74

Input Arguments
x — Data sites
numeric vector

Data sites of data values, specified as a numeric vector.

y — Data values
numeric vector

Data values, specified as a numeric vector.

box — Box to find data outside of
numeric vector with four elements

Box to find data outside of, specified as a numeric vector [xmin xmax ymin ymax] with four
elements.
Example: [-1 1 0 2]

domain — Domain to find data outside of
numeric vector with two elements

Domain to find data outside of, specified as a numeric vector [xmin xmax] with two elements.
Example: [-1 1]

range — Range to find data outside of
numeric vector with two elements

Range to find data outside of, specified as a numeric vector [ymin ymax] with two elements.
Example: [3 4]

indices — Indices of data points to find
numeric vector

Indices of data points to find, specified as a numeric vector.
Example: [3 7 9]

Version History
Introduced before R2006a

See Also
fit | fitoptions

 excludedata

13-75

feval
Evaluate cfit, sfit, or fittype object

Syntax
y = feval(cfun,x)
z = feval(sfun,[x,y])
z = feval(sfun,x,y)
y = feval(ffun,coeff1,coeff2,...,x)
z = feval(ffun,coeff1,coeff2,...,x,y)

Description

Note You can use feval to evaluate fits, but you can treat fit objects as functions and call feval
indirectly using this syntax instead:

y = cfun(x) % cfit objects;
z = sfun(x,y) % sfit objects
z = sfun([x, y]) % sfit objects
y = ffun(coef1,coef2,...,x) % curve fittype objects;
z = ffun(coef1,coef2,...,x,y) % surface fittype objects;

Alternatively, you can use the feval method to evaluate the estimated function, either at your
original data points, or at new locations. The latter is referred to as interpolation or prediction,
depending on the type of model. You can also use feval to extrapolate the estimated function's value
at new locations that are not within the range of the original data.

y = feval(cfun,x) evaluates the cfit object cfun at the predictor values in the column vector x
and returns the response values in the column vector y.

z = feval(sfun,[x,y]) evaluates the sfit object sfun at the predictor values in the two column
matrix [x,y] and returns the response values in the column vector z.

z = feval(sfun,x,y) evaluates the sfit object sfun at the predictor values in the matrices x
and y that must be the same size. It returns the response values in the matrix z that will be the same
size as x and y.

y = feval(ffun,coeff1,coeff2,...,x) assigns the coefficients coeff1, coeff2, etc. to the
fittype object ffun, evaluates it at the predictor values in the column vector x, and returns the
response values in the column vector y. ffun cannot be a cfit object in this syntax. To evaluate
cfit objects, use the first syntax.

z = feval(ffun,coeff1,coeff2,...,x,y) achieves a similar result for a fittype object for a
surface.

Examples

13 Functions

13-76

Evaluate fittype and cfit objects using the confint function

Create the fittype and cfit objects, and a random matrix of predictor values.

f = fittype('a*x^2+b*exp(n*x)');
c = cfit(f,1,10.3,-1e2);
X = rand(2)

X =
 0.0579 0.8132
 0.3529 0.0099

To evaluate the fittype object, f, call the feval function.

y1 = feval(f,1,10.3,-1e2,X)

y1 =
 0.0349 0.6612
 0.1245 3.8422

Alternatively, you can treat fit objects as functions and call feval indirectly using this syntax.

y1 = f(1,10.3,-1e2,X)

y1 =
 0.0349 0.6612
 0.1245 3.8422

Now evaluate the cfit object, c.

y2 = feval(c,X)

y2 =
 0.0349
 0.1245
 0.6612
 3.8422

Alternatively, call feval indirectly.

y2 = c(X)

y2 =
 0.0349
 0.1245
 0.6612
 3.8422

Input Arguments
cfun — cfit function
cfit

Function to evaluate, specified as a cfit object.

sfun — sfit function
sfit

Function to evaluate, specified as an sfit object.

 feval

13-77

ffun — fittype function
fittype

Function to evaluate, specified as a fittype object.

x — Evaluation points
vector | matrix

Points at which to evaluate the function, specified as a vector or matrix.

y — Evaluation points
vector | matrix

Points at which to evaluate the function, specified as a vector or matrix.

coeff1,coeff2,... — Coefficients
scalar

One or more coefficients assigned to the fittype object ffun, specified as scalars.

Output Arguments
y — Response values
column vector

Response values of the function evaluated at the predictors values in the column vector x, returned as
a column vector.

z — Response values
matrix

Response values of the function evaluated at the predictors values in the two column matrix [x,y],
returned as a matrix.

Version History
Introduced before R2006a

See Also
fit | fittype | cfit

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-78

fit
Fit curve or surface to data

Syntax
fitobject = fit(x,y,fitType)
fitobject = fit([x,y],z,fitType)
fitobject = fit(x,y,fitType,fitOptions)
fitobject = fit(x,y,fitType,Name=Value)
[fitobject,gof] = fit(x,y,fitType)
[fitobject,gof,output] = fit(x,y,fitType)

Description
fitobject = fit(x,y,fitType) creates the fit to the data in x and y with the model specified by
fitType.

fitobject = fit([x,y],z,fitType) creates a surface fit to the data in vectors x, y, and z.

fitobject = fit(x,y,fitType,fitOptions) creates a fit to the data using the algorithm
options specified by the fitOptions object.

fitobject = fit(x,y,fitType,Name=Value) creates a fit to the data using the library model
fitType with additional options specified by one or more Name=Value pair arguments. Use
fitoptions to display available property names and default values for the specific library model.

[fitobject,gof] = fit(x,y,fitType) returns goodness-of-fit statistics in the structure gof.

[fitobject,gof,output] = fit(x,y,fitType) returns fitting algorithm information in the
structure output.

Examples

Fit a Quadratic Curve

Load some data, fit a quadratic curve to variables cdate and pop, and plot the fit and data.

load census;
f=fit(cdate,pop,'poly2')

f =
 Linear model Poly2:
 f(x) = p1*x^2 + p2*x + p3
 Coefficients (with 95% confidence bounds):
 p1 = 0.006541 (0.006124, 0.006958)
 p2 = -23.51 (-25.09, -21.93)
 p3 = 2.113e+04 (1.964e+04, 2.262e+04)

plot(f,cdate,pop)

 fit

13-79

For a list of library model names, see fitType.

Fit a Polynomial Surface

Load some data and fit a polynomial surface of degree 2 in x and degree 3 in y. Plot the fit and data.

load franke
sf = fit([x, y],z,'poly23')

 Linear model Poly23:
 sf(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y
 + p12*x*y^2 + p03*y^3
 Coefficients (with 95% confidence bounds):
 p00 = 1.118 (0.9149, 1.321)
 p10 = -0.0002941 (-0.000502, -8.623e-05)
 p01 = 1.533 (0.7032, 2.364)
 p20 = -1.966e-08 (-7.084e-08, 3.152e-08)
 p11 = 0.0003427 (-0.0001009, 0.0007863)
 p02 = -6.951 (-8.421, -5.481)
 p21 = 9.563e-08 (6.276e-09, 1.85e-07)
 p12 = -0.0004401 (-0.0007082, -0.0001721)
 p03 = 4.999 (4.082, 5.917)

plot(sf,[x,y],z)

13 Functions

13-80

Fit a Surface Using Variables in a MATLAB Table

Load the franke data and convert it to a MATLAB® table.

load franke
T = table(x,y,z);

Specify the variables in the table as inputs to the fit function, and plot the fit.

f = fit([T.x, T.y],T.z,'linearinterp');
plot(f, [T.x, T.y], T.z)

 fit

13-81

Create Fit Options and Fit Type Before Fitting

Load and plot the data, create fit options and fit type using the fittype and fitoptions functions,
then create and plot the fit.

Load and plot the data in census.mat.

load census
plot(cdate,pop,'o')

13 Functions

13-82

Create a fit options object and a fit type for the custom nonlinear model y = a(x− b)n, where a and b
are coefficients and n is a problem-dependent parameter.

fo = fitoptions('Method','NonlinearLeastSquares',...
 'Lower',[0,0],...
 'Upper',[Inf,max(cdate)],...
 'StartPoint',[1 1]);
ft = fittype('a*(x-b)^n','problem','n','options',fo);

Fit the data using the fit options and a value of n = 2.

[curve2,gof2] = fit(cdate,pop,ft,'problem',2)

curve2 =
 General model:
 curve2(x) = a*(x-b)^n
 Coefficients (with 95% confidence bounds):
 a = 0.006092 (0.005743, 0.006441)
 b = 1789 (1784, 1793)
 Problem parameters:
 n = 2

gof2 = struct with fields:
 sse: 246.1543
 rsquare: 0.9980
 dfe: 19
 adjrsquare: 0.9979

 fit

13-83

 rmse: 3.5994

Fit the data using the fit options and a value of n = 3.

[curve3,gof3] = fit(cdate,pop,ft,'problem',3)

curve3 =
 General model:
 curve3(x) = a*(x-b)^n
 Coefficients (with 95% confidence bounds):
 a = 1.359e-05 (1.245e-05, 1.474e-05)
 b = 1725 (1718, 1731)
 Problem parameters:
 n = 3

gof3 = struct with fields:
 sse: 232.0058
 rsquare: 0.9981
 dfe: 19
 adjrsquare: 0.9980
 rmse: 3.4944

Plot the fit results with the data.

hold on
plot(curve2,'m')
plot(curve3,'c')
legend('Data','n=2','n=3')
hold off

13 Functions

13-84

Fit Multiple Polynomials

Load the carbon12alpha nuclear reaction sample data set.

load carbon12alpha

angle is a vector of emission angles in radians. counts is a vector of raw alpha particle counts that
correspond to the angles in angle.

Display a scatter plot of the counts plotted against the angles.

scatter(angle,counts)

 fit

13-85

The scatter plot shows that the counts oscillate as the angle increases between 0 and 4.5. To fit a
polynomial model to the data, specify the fitType input argument as "poly#" where # is an integer
from one to nine. You can fit models of up to nine degrees. See “List of Library Models for Curve and
Surface Fitting” on page 4-10 for more information.

Fit a fifth-degree, seventh-degree, and ninth-degree polynomial to the nuclear reaction data. Return
the goodness-of-fit statistics for each fit.

[f5,gof5] = fit(angle,counts,"poly5");
[f7,gof7] = fit(angle,counts,"poly7");
[f9,gof9] = fit(angle,counts,"poly9");

Generate a vector of query points between 0 and 4.5 by using the linspace function. Evaluate the
polynomial fits at the query points, and then plot them together with the nuclear reaction data.

xq = linspace(0,4.5,1000);

figure
hold on
scatter(angle,counts,"k")
plot(xq,f5(xq))
plot(xq,f7(xq))
plot(xq,f9(xq))
ylim([-100,550])
legend("original data","fifth-degree polynomial","seventh-degree polynomial","ninth-degree polynomial")

13 Functions

13-86

The plot indicates that the ninth-degree polynomial follows the data most closely.

Display the goodness-of-fit statistics for each fit by using the struct2table function.

gof = struct2table([gof5 gof7 gof9],RowNames=["f5" "f7" "f9"])

gof=3×5 table
 sse rsquare dfe adjrsquare rmse
 __________ _______ ___ __________ ______

 f5 1.0901e+05 0.54614 18 0.42007 77.82
 f7 32695 0.86387 16 0.80431 45.204
 f9 3660.2 0.98476 14 0.97496 16.169

The sum-of-squares error (SSE) for the ninth-degree polynomial fit is smaller than the SSEs for the
fifth-degree and seventh-degree fits. This result confirms that the ninth-degree polynomial follows the
data most closely.

Fit a Cubic Polynomial Specifying Normalize and Robust Options

Load some data and fit and plot a cubic polynomial with center and scale (Normalize) and robust
fitting options.

 fit

13-87

load census;
f=fit(cdate,pop,'poly3','Normalize','on','Robust','Bisquare')

f =
 Linear model Poly3:
 f(x) = p1*x^3 + p2*x^2 + p3*x + p4
 where x is normalized by mean 1890 and std 62.05
 Coefficients (with 95% confidence bounds):
 p1 = -0.4619 (-1.895, 0.9707)
 p2 = 25.01 (23.79, 26.22)
 p3 = 77.03 (74.37, 79.7)
 p4 = 62.81 (61.26, 64.37)

plot(f,cdate,pop)

Fit a Curve Defined by a File

Define a function in a file and use it to create a fit type and fit a curve.

Define a function in a MATLAB file.

function y = piecewiseLine(x,a,b,c,d,k)
% PIECEWISELINE A line made of two pieces
% that is not continuous.

13 Functions

13-88

y = zeros(size(x));

% This example includes a for-loop and if statement
% purely for example purposes.
for i = 1:length(x)
 if x(i) < k,
 y(i) = a + b.* x(i);
 else
 y(i) = c + d.* x(i);
 end
end
end

Save the file.

Define some data, create a fit type specifying the function piecewiseLine, create a fit using the fit
type ft, and plot the results.

x = [0.81;0.91;0.13;0.91;0.63;0.098;0.28;0.55;...
0.96;0.96;0.16;0.97;0.96];
y = [0.17;0.12;0.16;0.0035;0.37;0.082;0.34;0.56;...
0.15;-0.046;0.17;-0.091;-0.071];
ft = fittype('piecewiseLine(x, a, b, c, d, k)')
f = fit(x, y, ft, 'StartPoint', [1, 0, 1, 0, 0.5])
plot(f, x, y)

Exclude Points from Fit

Load some data and fit a custom equation specifying points to exclude. Plot the results.

Load data and define a custom equation and some start points.

[x, y] = titanium;

gaussEqn = 'a*exp(-((x-b)/c)^2)+d'

gaussEqn =
'a*exp(-((x-b)/c)^2)+d'

startPoints = [1.5 900 10 0.6]

startPoints = 1×4

 1.5000 900.0000 10.0000 0.6000

Create two fits using the custom equation and start points, and define two different sets of excluded
points, using an index vector and an expression. Use Exclude to remove outliers from your fit.

f1 = fit(x',y',gaussEqn,'Start', startPoints, 'Exclude', [1 10 25])

f1 =
 General model:
 f1(x) = a*exp(-((x-b)/c)^2)+d
 Coefficients (with 95% confidence bounds):
 a = 1.493 (1.432, 1.554)
 b = 897.4 (896.5, 898.3)

 fit

13-89

 c = 27.9 (26.55, 29.25)
 d = 0.6519 (0.6367, 0.6672)

f2 = fit(x',y',gaussEqn,'Start', startPoints, 'Exclude', x < 800)

f2 =
 General model:
 f2(x) = a*exp(-((x-b)/c)^2)+d
 Coefficients (with 95% confidence bounds):
 a = 1.494 (1.41, 1.578)
 b = 897.4 (896.2, 898.7)
 c = 28.15 (26.22, 30.09)
 d = 0.6466 (0.6169, 0.6764)

Plot both fits.

plot(f1,x,y)
title('Fit with data points 1, 10, and 25 excluded')

figure
plot(f2,x,y)
title('Fit with data points excluded such that x < 800')

13 Functions

13-90

Exclude Points and Plot Fit Showing Excluded Data

You can define the excluded points as variables before supplying them as inputs to the fit function.
The following steps recreate the fits in the previous example and allow you to plot the excluded points
as well as the data and the fit.

Load data and define a custom equation and some start points.

[x, y] = titanium;

gaussEqn = 'a*exp(-((x-b)/c)^2)+d'

gaussEqn =
'a*exp(-((x-b)/c)^2)+d'

startPoints = [1.5 900 10 0.6]

startPoints = 1×4

 1.5000 900.0000 10.0000 0.6000

Define two sets of points to exclude, using an index vector and an expression.

exclude1 = [1 10 25];
exclude2 = x < 800;

 fit

13-91

Create two fits using the custom equation, startpoints, and the two different excluded points.

f1 = fit(x',y',gaussEqn,'Start', startPoints, 'Exclude', exclude1);
f2 = fit(x',y',gaussEqn,'Start', startPoints, 'Exclude', exclude2);

Plot both fits and highlight the excluded data.

plot(f1,x,y,exclude1)
title('Fit with data points 1, 10, and 25 excluded')

figure;
plot(f2,x,y,exclude2)
title('Fit with data points excluded such that x < 800')

13 Functions

13-92

For a surface fitting example with excluded points, load some surface data and create and plot fits
specifying excluded data.

load franke
f1 = fit([x y],z,'poly23', 'Exclude', [1 10 25]);
f2 = fit([x y],z,'poly23', 'Exclude', z > 1);

figure
plot(f1, [x y], z, 'Exclude', [1 10 25]);
title('Fit with data points 1, 10, and 25 excluded')

 fit

13-93

figure
plot(f2, [x y], z, 'Exclude', z > 1);
title('Fit with data points excluded such that z > 1')

13 Functions

13-94

Compare Extrapolation Methods

Generate some noisy data using the membrane and randn functions.

n = 41;
M = membrane(1,20)+0.02*randn(n);
[X,Y] = meshgrid(1:n);

The matrix M contains data for the L-shaped membrane with added noise. The matrices X and Y
contain the row and column index values, respectively, for the corresponding elements in M.

Display a surface plot of the data.

figure(1)
surf(X,Y,M)

 fit

13-95

The plot shows a wrinkled L-shaped membrane. The wrinkles in the membrane are caused by the
noise in the data.

Fit two surfaces through the wrinkled membrane using linear interpolation. For the first surface,
specify the linear extrapolation method. For the second surface, specify the extrapolation method as
nearest neighbor.

flinextrap = fit([X(:),Y(:)],M(:),"linearinterp",ExtrapolationMethod="linear");
fnearextrap = fit([X(:),Y(:)],M(:),"linearinterp",ExtrapolationMethod="nearest");

Investigate the differences between the extrapolation methods by using the meshgrid function to
evaluate the fits at query points extending outside the convex hull of the X and Y data.

[Xq,Yq] = meshgrid(-10:50);

Zlin = flinextrap(Xq,Yq);
Znear = fnearextrap(Xq,Yq);

Plot the evaluated fits.

figure(2)
surf(Xq,Yq,Zlin)
title("Linear Extrapolation")
xlabel("X")
ylabel("Y")
zlabel("M")

13 Functions

13-96

figure(3)
surf(Xq,Yq,Znear)
title("Nearest Neighbor Extrapolation")
xlabel("X")
ylabel("Y")
zlabel("M")

 fit

13-97

The linear extrapolation method generates spikes outside of the convex hull. The plane segments that
form the spikes follow the gradient at points on the convex hull's border. The nearest neighbor
extrapolation method uses the data on the border to extend the surface in each direction. This
method of extrapolation generates waves that mimic the border.

Fit a Smoothing Spline Curve and Return Goodness-of-Fit Information

Load some data and fit a smoothing spline curve through variables month and pressure, and return
goodness of fit information and the output structure. Plot the fit and the residuals against the data.

load enso;
[curve, goodness, output] = fit(month,pressure,'smoothingspline');
plot(curve,month,pressure);
xlabel('Month');
ylabel('Pressure');

13 Functions

13-98

Plot the residuals against the x-data (month).

plot(curve, month, pressure, 'residuals')
xlabel('Month')
ylabel('Residuals')

 fit

13-99

Use the data in the output structure to plot the residuals against the y-data (pressure).

plot(pressure, output.residuals, '.')
xlabel('Pressure')
ylabel('Residuals')

13 Functions

13-100

Fit a Single-Term Exponential

Generate data with an exponential trend, and then fit the data using the first equation in the curve
fitting library of exponential models (a single-term exponential). Plot the results.

x = (0:0.2:5)';
y = 2*exp(-0.2*x) + 0.5*randn(size(x));
f = fit(x,y,'exp1');
plot(f,x,y)

 fit

13-101

Fit a Custom Model Using an Anonymous Function

You can use anonymous functions to make it easier to pass other data into the fit function.

Load data and set Emax to 1 before defining your anonymous function:

data = importdata('OpioidHypnoticSynergy.txt');
Propofol = data.data(:,1);
Remifentanil = data.data(:,2);
Algometry = data.data(:,3);
Emax = 1;

Define the model equation as an anonymous function:

Effect = @(IC50A, IC50B, alpha, n, x, y) ...
 Emax*(x/IC50A + y/IC50B + alpha*(x/IC50A)...
 .* (y/IC50B)).^n ./((x/IC50A + y/IC50B + ...
 alpha*(x/IC50A) .* (y/IC50B)).^n + 1);

Use the anonymous function Effect as an input to the fit function, and plot the results:

AlgometryEffect = fit([Propofol, Remifentanil], Algometry, Effect, ...
 'StartPoint', [2, 10, 1, 0.8], ...
 'Lower', [-Inf, -Inf, -5, -Inf], ...

13 Functions

13-102

 'Robust', 'LAR')
plot(AlgometryEffect, [Propofol, Remifentanil], Algometry)

For more examples using anonymous functions and other custom models for fitting, see the fittype
function.

Find Coefficient Order to Set Start Points and Bounds

For the properties Upper, Lower, and StartPoint, you need to find the order of the entries for
coefficients.

Create a fit type.

ft = fittype('b*x^2+c*x+a');

Get the coefficient names and order using the coeffnames function.

coeffnames(ft)

ans = 3x1 cell
 {'a'}
 {'b'}
 {'c'}

Note that this is different from the order of the coefficients in the expression used to create ft with
fittype.

Load data, create a fit and set the start points.

load enso
fit(month,pressure,ft,'StartPoint',[1,3,5])

ans =
 General model:
 ans(x) = b*x^2+c*x+a
 Coefficients (with 95% confidence bounds):
 a = 10.94 (9.362, 12.52)
 b = 0.0001677 (-7.985e-05, 0.0004153)
 c = -0.0224 (-0.06559, 0.02079)

This assigns initial values to the coefficients as follows: a = 1, b = 3, c = 5.

Alternatively, you can get the fit options and set start points and lower bounds, then refit using the
new options.

options = fitoptions(ft)

options =
 nlsqoptions with properties:

 StartPoint: []
 Lower: []
 Upper: []
 Algorithm: 'Trust-Region'
 DiffMinChange: 1.0000e-08

 fit

13-103

 DiffMaxChange: 0.1000
 Display: 'Notify'
 MaxFunEvals: 600
 MaxIter: 400
 TolFun: 1.0000e-06
 TolX: 1.0000e-06
 Robust: 'Off'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'NonlinearLeastSquares'

options.StartPoint = [10 1 3];
options.Lower = [0 -Inf 0];
fit(month,pressure,ft,options)

ans =
 General model:
 ans(x) = b*x^2+c*x+a
 Coefficients (with 95% confidence bounds):
 a = 10.23 (9.448, 11.01)
 b = 4.335e-05 (-1.82e-05, 0.0001049)
 c = 5.523e-12 (fixed at bound)

Input Arguments
x — Data to fit
matrix

Data to fit, specified as a matrix with either one (curve fitting) or two (surface fitting) columns. You
can specify variables in a MATLAB table using tablename.varname. Cannot contain Inf or NaN.
Only the real parts of complex data are used in the fit.
Example: x
Example: [x,y]
Data Types: double

y — Data to fit
vector

Data to fit, specified as a column vector with the same number of rows as x. You can specify a
variable in a MATLAB table using tablename.varname. Cannot contain Inf or NaN. Only the real
parts of complex data are used in the fit.

Use prepareCurveData or prepareSurfaceData if your data is not in column vector form.
Data Types: double

z — Data to fit
vector

Data to fit, specified as a column vector with the same number of rows as x. You can specify a
variable in a MATLAB table using tablename.varname. Cannot contain Inf or NaN. Only the real
parts of complex data are used in the fit.

13 Functions

13-104

Use prepareSurfaceData if your data is not in column vector form. For example, if you have 3
matrices, or if your data is in grid vector form, where length(X) = n, length(Y) = m and
size(Z) = [m,n].
Data Types: double

fitType — Model type to fit
character vector | string scalar | string array | cell array of character vectors | anonymous function |
fittype

Model type to fit, specified as a character vector or string scalar representing a library model name
or MATLAB expression, a string array of linear model terms or a cell array of character vectors of
such terms, an anonymous function, or a fittype created with the fittype function. You can use
any of the valid first inputs to fittype as an input to fit.

For a list of library model names, see “Model Names and Equations” on page 4-11.

To a fit custom model, use a MATLAB expression, a cell array of linear model terms, or an anonymous
function. You can also create a fittype using the fittype function, and then use it as the value of
the fitType input argument. For an example, see “Fit a Custom Model Using an Anonymous
Function” on page 13-102. For examples that use linear model terms, see the fittype function.
Example: "poly2"

fitOptions — Algorithm options
fitoptions

Algorithm options constructed using the fitoptions function. This is an alternative to specifying
name-value pair arguments for fit options.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Lower=[0,0],Upper=[Inf,max(x)],StartPoint=[1 1] specifies fitting method,
bounds, and start points.

Options for All Fitting Methods

Normalize — Option to center and scale data
'off' (default) | 'on'

Option to center and scale the data, specified as the comma-separated pair consisting of
'Normalize' and 'on' or 'off'.
Data Types: char

Exclude — Points to exclude from fit
expression | index vector | logical vector | empty

Points to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and
one of:

 fit

13-105

• An expression describing a logical vector, e.g., x > 10.
• A vector of integers indexing the points you want to exclude, e.g., [1 10 25].
• A logical vector for all data points where true represents an outlier, created by excludedata.

For an example, see “Exclude Points from Fit” on page 13-89.
Data Types: logical | double

Weights — Weights for fit
[] (default) | vector

Weights for the fit, specified as the comma-separated pair consisting of 'Weights' and a vector the
same size as the response data y (curves) or z (surfaces).
Data Types: double

problem — Values to assign to problem-dependent constants
cell array | double

Values to assign to the problem-dependent constants, specified as the comma-separated pair
consisting of 'problem' and a cell array with one element per problem dependent constant. For
details, see fittype.
Data Types: cell | double

Smoothing Options

SmoothingParam — Smoothing parameter
scalar value in the range (0,1)

Smoothing parameter, specified as the comma-separated pair consisting of 'SmoothingParam' and
a scalar value between 0 and 1. The default value depends on the data set. Only available if the fit
type is smoothingspline.
Data Types: double

Span — Proportion of data points to use in local regressions
0.25 (default) | scalar value in the range (0,1)

Proportion of data points to use in local regressions, specified as the comma-separated pair
consisting of 'Span' and a scalar value between 0 and 1. Only available if the fit type is lowess or
loess.
Data Types: double

Interpolation Options

ExtrapolationMethod — Extrapolation method
"auto" (default) | "none" | "linear" | "nearest" | "thinplate" | "biharmonic" | "pchip" |
"cubic"

Extrapolation method for an interpolant fit, specified as one of the following values:

13 Functions

13-106

Value Description Supported Fits
"auto" Default value for all interpolant

fit types. Set
ExtrapolationMethod to
"auto" to automatically assign
an extrapolation method to a fit
object during fitting.

All interpolant fit types and
cubicspline fits

"none" No extrapolation. Query points
outside of the convex hull of the
fitting data evaluate to NaN.

fit sets the extrapolation
method to "none" when you
specify the extrapolation
method as "auto" for
linearinterp and
cubicinterp surface fits.

linearinterp,
nearestinterp, and
cubicinterp surface fits

"linear" Linear extrapolation based on
boundary gradients.

fit sets the extrapolation
method to "linear" when you
specify the extrapolation
method as "auto" for
"linearinterp" curve fits.

linearinterp fits,
nearestinterp surface fits,
and cubicinterp surface fits

"nearest" Nearest neighbor extrapolation.
This extrapolation method
evaluates to the value of the
nearest point on the boundary
of the fitting data's convex hull.

fit sets the extrapolation
method to "nearest" when
you specify the extrapolation
method as "auto" for
"nearestinterp" fits.

linearinterp surface fits,
nearestinterp fits, and
cubicinterp surface fits

"thinplate" Thin-plate spline extrapolation.
This extrapolation method
extends the thin-plate
interpolating spline outside of
the fitting data's convex hull.
For more information, see
tpaps.

fit sets the extrapolation
method to "thinplate" when
you specify the extrapolation
method as "auto" for
"thinplateinterp" fits.

thinplateinterp fits

 fit

13-107

Value Description Supported Fits
"biharmonic" Biharmonic spline extrapolation.

This extrapolation method
extends the biharmonic
interpolating spline outside of
the fitting data's convex hull.

fit sets the extrapolation
method to "biharmonic" when
you specify the extrapolation
method as "auto" for
"biharmonicinterp" fits.

biharmonicinterp fits

"pchip" Piecewise cubic hermite
interpolating polynomial
(PCHIP) extrapolation. This
extrapolation method extends a
shape-preserving PCHIP outside
of the fitting data's convex hull.
For more information, see
pchip.

fit sets the extrapolation
method to "pchip" when you
specify the extrapolation
method as "auto" for
pchipinterp fits.

pchipinterp fits

"cubic" Cubic spline extrapolation. This
extrapolation method extends a
cubic interpolating spline
outside of the fitting data's
convex hull.

fit sets the extrapolation
method to "cubic" when you
specify the extrapolation
method as "auto" for
cubicinterp curve fits and
cubicspline fits. For more
information, see spline.

cubicspline fits and
cubicinterp curve fits

Data Types: char | string

Linear and Nonlinear Least-Squares Options

Robust — Robust linear least-squares fitting method
'off' (default) | LAR | Bisquare

Robust linear least-squares fitting method, specified as the comma-separated pair consisting of
'Robust' and one of these values:

• 'LAR' specifies the least absolute residual method.
• 'Bisquare' specifies the bisquare weights method.

13 Functions

13-108

Available when the fit type Method is LinearLeastSquares or NonlinearLeastSquares.
Data Types: char

Lower — Lower bounds on coefficients to be fitted
[] (default) | vector

Lower bounds on the coefficients to be fitted, specified as the comma-separated pair consisting of
'Lower' and a vector. The default value is an empty vector, indicating that the fit is unconstrained by
lower bounds. If bounds are specified, the vector length must equal the number of coefficients. Find
the order of the entries for coefficients in the vector value by using the coeffnames function. For an
example, see “Find Coefficient Order to Set Start Points and Bounds” on page 13-103. Individual
unconstrained lower bounds can be specified by -Inf.

Available when the Method is LinearLeastSquares or NonlinearLeastSquares.
Data Types: double

Upper — Upper bounds on coefficients to be fitted
[] (default) | vector

Upper bounds on the coefficients to be fitted, specified as the comma-separated pair consisting of
'Upper' and a vector. The default value is an empty vector, indicating that the fit is unconstrained by
upper bounds. If bounds are specified, the vector length must equal the number of coefficients. Find
the order of the entries for coefficients in the vector value by using the coeffnames function. For an
example, see “Find Coefficient Order to Set Start Points and Bounds” on page 13-103. Individual
unconstrained upper bounds can be specified by +Inf.

Available when the Method is LinearLeastSquares or NonlinearLeastSquares.
Data Types: logical

Nonlinear Least-Squares Options

StartPoint — Initial values for the coefficients
[] (default) | vector

Initial values for the coefficients, specified as the comma-separated pair consisting of 'StartPoint'
and a vector. Find the order of the entries for coefficients in the vector value by using the
coeffnames function. For an example, see “Find Coefficient Order to Set Start Points and Bounds”
on page 13-103.

If no start points (the default value of an empty vector) are passed to the fit function, starting points
for some library models are determined heuristically. For rational and Weibull models, and all custom
nonlinear models, the toolbox selects default initial values for coefficients uniformly at random from
the interval (0,1). As a result, multiple fits using the same data and model might lead to different
fitted coefficients. To avoid this, specify initial values for coefficients with a fitoptions object or a
vector value for the StartPoint value.

Available when the Method is NonlinearLeastSquares.
Data Types: double

Algorithm — Algorithm to use for fitting procedure
'Trust-Region' (default) | 'Levenberg-Marquardt'

 fit

13-109

Algorithm to use for the fitting procedure, specified as the comma-separated pair consisting of
'Algorithm' and either 'Levenberg-Marquardt' or 'Trust-Region'.

Available when the Method is NonlinearLeastSquares.
Data Types: char

DiffMaxChange — Maximum change in coefficients for finite difference gradients
0.1 (default)

Maximum change in coefficients for finite difference gradients, specified as the comma-separated pair
consisting of 'DiffMaxChange' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

DiffMinChange — Minimum change in coefficients for finite difference gradients
10–8 (default)

Minimum change in coefficients for finite difference gradients, specified as the comma-separated pair
consisting of 'DiffMinChange' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

Display — Display option in Command Window
'notify' (default) | 'final' | 'iter' | 'off'

Display option in the command window, specified as the comma-separated pair consisting of
'Display' and one of these options:

• 'notify' displays output only if the fit does not converge.
• 'final' displays only the final output.
• 'iter' displays output at each iteration.
• 'off' displays no output.

Available when the Method is NonlinearLeastSquares.
Data Types: char

MaxFunEvals — Maximum number of evaluations of model allowed
600 (default)

Maximum number of evaluations of the model allowed, specified as the comma-separated pair
consisting of 'MaxFunEvals' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

MaxIter — Maximum number of iterations allowed for fit
400 (default)

Maximum number of iterations allowed for the fit, specified as the comma-separated pair consisting
of 'MaxIter' and a scalar.

13 Functions

13-110

Available when the Method is NonlinearLeastSquares.
Data Types: double

TolFun — Termination tolerance on model value
10–6 (default)

Termination tolerance on the model value, specified as the comma-separated pair consisting of
'TolFun' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

TolX — Termination tolerance on coefficient values
10–6 (default)

Termination tolerance on the coefficient values, specified as the comma-separated pair consisting of
'TolX' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

Output Arguments
fitobject — Fit result
cfit | sfit

Fit result, returned as a cfit (for curves) or sfit (for surfaces) object. See “Fit Postprocessing” for
functions for plotting, evaluating, calculating confidence intervals, integrating, differentiating, or
modifying your fit object.

gof — Goodness-of-fit statistics
gof structure

Goodness-of-fit statistics, returned as the gof structure including the fields in this table.

Field Value
sse Sum of squares due to error
rsquare R-squared (coefficient of determination)
dfe Degrees of freedom in the error
adjrsquare Degree-of-freedom adjusted coefficient of determination
rmse Root mean squared error (standard error)

output — Fitting algorithm information
output structure

Fitting algorithm information, returned as the output structure containing information associated
with the fitting algorithm.

Fields depend on the algorithm. For example, the output structure for nonlinear least-squares
algorithms includes the fields shown in this table.

 fit

13-111

Field Value
numobs Number of observations (response values)
numparam Number of unknown parameters (coefficients) to fit
residuals Vector of residuals
Jacobian Jacobian matrix
exitflag Describes the exit condition of the algorithm. Positive flags

indicate convergence, within tolerances. Zero flags indicate that
the maximum number of function evaluations or iterations was
exceeded. Negative flags indicate that the algorithm did not
converge to a solution.

iterations Number of iterations
funcCount Number of function evaluations
firstorderopt Measure of first-order optimality (absolute maximum of gradient

components)
algorithm Fitting algorithm employed

Version History
Introduced before R2006a

R2023a: Specify extrapolation method for surface interpolant fits

Starting in 2023a, you can specify the extrapolation method for interpolant fits by using the
ExtrapolationMethod name-value argument. For curve fits, Curve Fitting Toolbox supports only
the default extrapolation methods available in previous releases.

See Also
Apps
Curve Fitter

Functions
fittype | fitoptions | prepareCurveData | prepareSurfaceData | feval | plot | confint

Topics
“Fit Postprocessing”
“List of Library Models for Curve and Surface Fitting” on page 4-10
“Custom Models” on page 5-2
“Parametric Fitting” on page 4-2

13 Functions

13-112

fitoptions
Create or modify fit options object

Syntax
fitOptions = fitoptions

fitOptions = fitoptions(libraryModelName)
fitOptions = fitoptions(libraryModelName,Name,Value)

fitOptions = fitoptions(fitType)

fitOptions = fitoptions(Name,Value)

newOptions = fitoptions(fitOptions,Name,Value)
newOptions = fitoptions(options1,options2)

Description
fitOptions = fitoptions creates the default fit options object fitOptions.

fitOptions = fitoptions(libraryModelName) creates the default fit options object for the
library model.

fitOptions = fitoptions(libraryModelName,Name,Value) creates fit options for the
specified library model with additional options specified by one or more Name,Value pair arguments.

fitOptions = fitoptions(fitType) gets the fit options object for the specified fitType. Use
this syntax to work with fit options for custom models.

fitOptions = fitoptions(Name,Value) creates fit options with additional options specified by
one or more Name,Value pair arguments.

newOptions = fitoptions(fitOptions,Name,Value) modifies the existing fit options object
fitOptions and returns updated fit options in newOptions with new options specified by one or
more Name,Value pair arguments.

newOptions = fitoptions(options1,options2) combines the existing fit options objects
options1 and options2 in newOptions.

• If Method agrees, the nonempty values for the properties in options2 override the
corresponding values in options1 in newOptions.

• If Method differs, newOptions contains the options1 value for Method and values from
options2 for Normalize, Exclude, and Weights.

Examples

Modify Default Fit Options to Normalize Data

Create the default fit options object and set the option to center and scale the data before fitting.

 fitoptions

13-113

options = fitoptions;
options.Normal = 'on'

options =
 basefitoptions with properties:

 Normalize: 'on'
 Exclude: []
 Weights: []
 Method: 'None'

Create Default Fit Options for Gaussian Fit
options = fitoptions('gauss2')

options =
 nlsqoptions with properties:

 StartPoint: []
 Lower: [-Inf -Inf 0 -Inf -Inf 0]
 Upper: []
 Algorithm: 'Trust-Region'
 DiffMinChange: 1.0000e-08
 DiffMaxChange: 0.1000
 Display: 'Notify'
 MaxFunEvals: 600
 MaxIter: 400
 TolFun: 1.0000e-06
 TolX: 1.0000e-06
 Robust: 'Off'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'NonlinearLeastSquares'

Set Polynomial Fit Options

Create fit options for a cubic polynomial and set center and scale and robust fitting options.

options = fitoptions('poly3', 'Normalize', 'on', 'Robust', 'Bisquare')

options =
 llsqoptions with properties:

 Lower: []
 Upper: []
 Robust: 'Bisquare'
 Normalize: 'on'
 Exclude: []
 Weights: []
 Method: 'LinearLeastSquares'

13 Functions

13-114

Create Fit Options for Linear Least Squares

options = fitoptions('Method', 'LinearLeastSquares')

options =
 llsqoptions with properties:

 Lower: []
 Upper: []
 Robust: 'Off'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'LinearLeastSquares'

Specify Extrapolation Method for Interpolant Fits

Create a fitoptions object for a linear interpolant fit with nearest neighbor extrapolation.

linearoptions = fitoptions("linearinterp",ExtrapolationMethod="nearest")

linearoptions =
 linearinterpoptions with properties:

 ExtrapolationMethod: 'nearest'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'LinearInterpolant'

Create a second fitoptions object for a cubic interpolant fit with nearest neighbor extrapolation.

cubicoptions = fitoptions("cubicinterp",ExtrapolationMethod="nearest")

cubicoptions =
 cubicsplineinterpoptions with properties:

 ExtrapolationMethod: 'nearest'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'CubicSplineInterpolant'

You can use the fit options in linearoptions to create a linearinterp fit object using the fit
function. Use cubicoptions to create a cubicinterp fit.

 fitoptions

13-115

Use Identical Fit Options in Multiple Fits

Modifying the default fit options object is useful when you want to set the Normalize, Exclude, or
Weights properties, and then fit your data using the same options with different fitting methods. For
example, the following uses the same fit options to fit different library model types.

load census
options = fitoptions;
options.Normalize = 'on';
f1 = fit(cdate,pop,'poly3',options);
f2 = fit(cdate,pop,'exp1',options);
f3 = fit(cdate,pop,'cubicspline',options)

f3 =
 Cubic interpolating spline:
 f3(x) = piecewise polynomial computed from p
 with cubic extrapolation
 where x is normalized by mean 1890 and std 62.05
 Coefficients:
 p = coefficient structure

Find and Change the Smoothing Fit Option

Find the smoothing parameter. Data-dependent fit options such as the smooth parameter are
returned in the third output argument of the fit function.

load census
[f,gof,out] = fit(cdate,pop,'SmoothingSpline');
smoothparam = out.p

smoothparam = 0.0089

Modify the default smoothing parameter for a new fit.

options = fitoptions('Method','SmoothingSpline',...
 'SmoothingParam',0.0098);
[f,gof,out] = fit(cdate,pop,'SmoothingSpline',options);

Apply Coefficient Bounds to Improve Gaussian Fit

Create a Gaussian fit, inspect the confidence intervals, and specify lower bound fit options to help the
algorithm.

Create a noisy sum of two Gaussian peaks, one with a small width, and one with a large width.

a1 = 1; b1 = -1; c1 = 0.05;
a2 = 1; b2 = 1; c2 = 50;
x = (-10:0.02:10)';
gdata = a1*exp(-((x-b1)/c1).^2) + ...
 a2*exp(-((x-b2)/c2).^2) + ...
 0.1*(rand(size(x))-.5);
plot(x,gdata)

13 Functions

13-116

Fit the data using the two-term Gaussian library model.

gfit = fit(x,gdata,'gauss2')

gfit =
 General model Gauss2:
 gfit(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2)
 Coefficients (with 95% confidence bounds):
 a1 = -0.145 (-1.486, 1.195)
 b1 = 9.725 (-14.71, 34.15)
 c1 = 7.117 (-15.84, 30.07)
 a2 = 14.06 (-1.958e+04, 1.961e+04)
 b2 = 607.1 (-3.194e+05, 3.207e+05)
 c2 = 376 (-9.739e+04, 9.814e+04)

plot(gfit,x,gdata)

 fitoptions

13-117

The algorithm is having difficulty, as indicated by the wide confidence intervals for several
coefficients.

To help the algorithm, specify lower bounds for the nonnegative amplitudes a1 and a2 and widths c1,
c2.

options = fitoptions('gauss2', 'Lower', [0 -Inf 0 0 -Inf 0]);

Alternatively, you can set properties of the fit options using the form options.Property =
NewPropertyValue.

options = fitoptions('gauss2');
options.Lower = [0 -Inf 0 0 -Inf 0];

Recompute the fit using the bound constraints on the coefficients.

gfit = fit(x,gdata,'gauss2',options)

gfit =
 General model Gauss2:
 gfit(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2)
 Coefficients (with 95% confidence bounds):
 a1 = 1.005 (0.966, 1.044)
 b1 = -1 (-1.002, -0.9988)
 c1 = 0.0491 (0.0469, 0.0513)
 a2 = 0.9985 (0.9958, 1.001)
 b2 = 0.8059 (0.3879, 1.224)
 c2 = 50.6 (46.68, 54.52)

13 Functions

13-118

plot(gfit,x,gdata)

This is a much better fit. You can further improve the fit by assigning reasonable values to other
properties in the fit options object.

Copy and Combine Fit Options

Create fit options and set lower bounds.

options = fitoptions('gauss2', 'Lower', [0 -Inf 0 0 -Inf 0])

options =
 nlsqoptions with properties:

 StartPoint: []
 Lower: [0 -Inf 0 0 -Inf 0]
 Upper: []
 Algorithm: 'Trust-Region'
 DiffMinChange: 1.0000e-08
 DiffMaxChange: 0.1000
 Display: 'Notify'
 MaxFunEvals: 600
 MaxIter: 400
 TolFun: 1.0000e-06
 TolX: 1.0000e-06

 fitoptions

13-119

 Robust: 'Off'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'NonlinearLeastSquares'

Make a new copy of the fit options and modify the robust parameter.

newoptions = fitoptions(options, 'Robust','Bisquare')

newoptions =
 nlsqoptions with properties:

 StartPoint: []
 Lower: [0 -Inf 0 0 -Inf 0]
 Upper: []
 Algorithm: 'Trust-Region'
 DiffMinChange: 1.0000e-08
 DiffMaxChange: 0.1000
 Display: 'Notify'
 MaxFunEvals: 600
 MaxIter: 400
 TolFun: 1.0000e-06
 TolX: 1.0000e-06
 Robust: 'Bisquare'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'NonlinearLeastSquares'

Combine fit options.

options2 = fitoptions(options, newoptions)

options2 =
 nlsqoptions with properties:

 StartPoint: []
 Lower: [0 -Inf 0 0 -Inf 0]
 Upper: []
 Algorithm: 'Trust-Region'
 DiffMinChange: 1.0000e-08
 DiffMaxChange: 0.1000
 Display: 'Notify'
 MaxFunEvals: 600
 MaxIter: 400
 TolFun: 1.0000e-06
 TolX: 1.0000e-06
 Robust: 'Bisquare'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'NonlinearLeastSquares'

13 Functions

13-120

Change Custom Model Fit Options

Create a linear model fit type.

lft = fittype({'x','sin(x)','1'})

lft =
 Linear model:
 lft(a,b,c,x) = a*x + b*sin(x) + c

Get the fit options for the fit type lft.

fo = fitoptions(lft)

fo =
 llsqoptions with properties:

 Lower: []
 Upper: []
 Robust: 'Off'
 Normalize: 'off'
 Exclude: []
 Weights: []
 Method: 'LinearLeastSquares'

Set the normalize fit option.

fo.Normalize = 'on'

fo =
 llsqoptions with properties:

 Lower: []
 Upper: []
 Robust: 'Off'
 Normalize: 'on'
 Exclude: []
 Weights: []
 Method: 'LinearLeastSquares'

Input Arguments
libraryModelName — Library model to fit
character vector | string scalar

Library model to fit, specified as a character vector or string scalar. This table shows some common
examples.

Library Model Name Description
'poly1' Linear polynomial curve
'poly11' Linear polynomial surface
'poly2' Quadratic polynomial curve

 fitoptions

13-121

Library Model Name Description
'linearinterp' Piecewise linear interpolation
'cubicinterp' Piecewise cubic interpolation
'smoothingspline' Smoothing spline (curve)
'lowess' Local linear regression (surface)

For a list of library model names, see “Model Names and Equations” on page 4-11.
Example: 'poly2'
Data Types: char | string

fitType — Model type to fit
fittype

Model type to fit, specified as a fittype constructed with the fittype function. Use this to work
with fit options for custom models.

fitOptions — Algorithm options
fitoptions

Algorithm options, specified as a fitoptions object created using the fitoptions function.

options1 — Algorithm options to combine
fitoptions

Algorithm options to combine, constructed using the fitoptions function.

options2 — Algorithm options to combine
fitoptions

Algorithm options to combine, constructed using the fitoptions function.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Method','NonlinearLeastSquares','Lower',[0,0],'Upper',
[Inf,max(x)],'Startpoint',[1 1] specifies fitting method, bounds, and start points.

Options for All Fitting Methods

Normalize — Option to center and scale data
'off' (default) | 'on'

Option to center and scale the data, specified as the comma-separated pair consisting of
'Normalize' and 'on' or 'off'.
Data Types: char

Exclude — Points to exclude from fit
expression | index vector | logical vector | empty

13 Functions

13-122

Points to exclude from the fit, specified as the comma-separated pair consisting of 'Exclude' and
one of:

• An expression describing a logical vector, e.g., x > 10.
• A vector of integers indexing the points you want to exclude, e.g., [1 10 25].
• A logical vector for all data points where true represents an outlier, created by excludedata.

For examples, see fit.

Weights — Weights for fit
[] (default) | vector

Weights for the fit, specified as the comma-separated pair consisting of 'Weights' and a vector the
same size as number of data points.
Data Types: double

Method — Fitting method
'None' (default) | 'NearestInterpolant | 'LinearInterpolant' | 'PchipInterpolant' |
CubicSplineInterpolant' | ...

Fitting method, specified as the comma-separated pair consisting of 'Method' and one of the fitting
methods in this table.

Fitting Method Description
'NearestInterpolant' Nearest neighbor interpolation
'LinearInterpolant' Linear interpolation
'PchipInterpolant' Piecewise cubic Hermite interpolation (curves

only)
'CubicSplineInterpolant' Cubic spline interpolation
'BiharmonicInterpolant' Biharmonic surface interpolation
'SmoothingSpline' Smoothing spline
'LowessFit' Lowess smoothing (surfaces only)
'LinearLeastSquares' Linear least squares
'NonlinearLeastSquares' Nonlinear least squares

Data Types: char | string

Interpolation Options

ExtrapolationMethod — Extrapolation method
"auto" (default) | "none" | "linear" | "nearest" | "thinplate" | "biharmonic" | "pchip" |
"cubic"

Extrapolation method for an interpolant fit, specified as one of the following values:

 fitoptions

13-123

Value Description Supported Fits
"auto" Default value for all interpolant

fit types. Set
ExtrapolationMethod to
"auto" to automatically assign
an extrapolation method to a fit
object when you use the fit
function.

All interpolant fit types and
cubicspline fits

"none" No extrapolation. When you use
fitOptions with the fit
function to evaluate query
points outside of the convex
hull, fit returns NaN.

linearinterp,
nearestinterp, and
cubicinterp surface fits

"linear" Linear extrapolation based on
boundary gradients

linearinterp fits,
nearestinterp surface fits,
and cubicinterp surface fits

"nearest" Nearest neighbor extrapolation.
This extrapolation method
evaluates to the value of the
nearest neighbor on the
boundary of the fitting data's
convex hull.

linearinterp surface fits,
nearestinterp fits, and
cubicinterp fits

"thinplate" Thin-plate spline extrapolation.
This extrapolation method
extends the thin-plate
interpolating spline outside of
the fitting data's convex hull.
For more information, see
tpaps.

thinplateinterp fits

"biharmonic" Biharmonic spline extrapolation.
This extrapolation method
extends the biharmonic
interpolating spline outside of
the fitting data's convex hull.

biharmonicinterp fits

"pchip" Piecewise cubic hermite
interpolating polynomial
(PCHIP) extrapolation. This
extrapolation method extends a
shape-preserving PCHIP outside
of the fitting data's convex hull.
For more information, see
pchip.

pchipinterp fits

"cubic" Cubic spline extrapolation. This
extrapolation method extends a
cubic interpolating spline
outside of the fitting data's
convex hull.

cubicspline fits and
cubicinterp curve fits

Data Types: char | string

13 Functions

13-124

Smoothing Options

SmoothingParam — Smoothing parameter
scalar value in the range (0,1)

Smoothing parameter, specified as the comma-separated pair consisting of 'SmoothingParam' and
a scalar value between 0 and 1. The default value depends on the data set. Only available if the
Method is SmoothingSpline.
Data Types: double

Span — Proportion of data points to use in local regressions
0.25 (default) | scalar value in the range (0,1)

Proportion of data points to use in local regressions, specified as the comma-separated pair
consisting of 'Span' and a scalar value between 0 and 1. Only available if the Method is LowessFit.
Data Types: double

Linear and Nonlinear Least-Squares Options

Robust — Robust linear least-squares fitting method
'off' (default) | 'LAR' | 'Bisquare'

Robust linear least-squares fitting method, specified as the comma-separated pair consisting of
'Robust' and one of these values:

• 'LAR' specifies the least absolute residual method.
• 'Bisquare' specifies the bisquare weights method.

Available when the Method is LinearLeastSquares or NonlinearLeastSquares.
Data Types: char

Lower — Lower bounds on coefficients to be fitted
[] (default) | vector

Lower bounds on the coefficients to be fitted, specified as the comma-separated pair consisting of
'Lower' and a vector. The default value is an empty vector, indicating that the fit is unconstrained by
lower bounds. If bounds are specified, the vector length must equal the number of coefficients. Find
the order of the entries for coefficients in the vector value by using the coeffnames function. For an
example, see fit. Individual unconstrained lower bounds can be specified by -Inf.

Available when the Method is LinearLeastSquares or NonlinearLeastSquares.
Data Types: double

Upper — Upper bounds on coefficients to be fitted
[] (default) | vector

Upper bounds on the coefficients to be fitted, specified as the comma-separated pair consisting of
'Upper' and a vector. The default value is an empty vector, indicating that the fit is unconstrained by
upper bounds. If bounds are specified, the vector length must equal the number of coefficients. Find
the order of the entries for coefficients in the vector value by using the coeffnames function. For an
example, see fit. Individual unconstrained upper bounds can be specified by +Inf.

Available when the Method is LinearLeastSquares or NonlinearLeastSquares.

 fitoptions

13-125

Data Types: logical

Nonlinear Least-Squares Options

StartPoint — Initial values for coefficients
[] (default) | vector

Initial values for the coefficients, specified as the comma-separated pair consisting of 'StartPoint'
and a vector. Find the order of the entries for coefficients in the vector value by using the
coeffnames function. For an example, see fit.

If no start points (the default value of an empty vector) are passed to the fit function, starting points
for some library models are determined heuristically. For rational and Weibull models, and all custom
nonlinear models, the toolbox selects default initial values for coefficients uniformly at random from
the interval (0,1). As a result, multiple fits using the same data and model might lead to different
fitted coefficients. To avoid this, specify initial values for coefficients with a vector value for the
StartPoint property.

Available when the Method is NonlinearLeastSquares.
Data Types: double

Algorithm — Algorithm to use for fitting procedure
'Levenberg-Marquardt' (default) | 'Trust-Region'

Algorithm to use for the fitting procedure, specified as the comma-separated pair consisting of
'Algorithm' and either 'Levenberg-Marquardt' or 'Trust-Region'.

Available when the Method is NonlinearLeastSquares.
Data Types: char

DiffMaxChange — Maximum change in coefficients for finite difference gradients
0.1 (default)

Maximum change in coefficients for finite difference gradients, specified as the comma-separated pair
consisting of 'DiffMaxChange' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

DiffMinChange — Minimum change in coefficients for finite difference gradients
10–8 (default)

Minimum change in coefficients for finite difference gradients, specified as the comma-separated pair
consisting of 'DiffMinChange' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

Display — Display option in the Command Window
'notify' (default) | 'final' | 'iter' | 'off'

Display option in the command window, specified as the comma-separated pair consisting of
'Display' and one of these options:

13 Functions

13-126

• 'notify' displays output only if the fit does not converge.
• 'final' displays only the final output.
• 'iter' displays output at each iteration.
• 'off' displays no output.

Available when the Method is NonlinearLeastSquares.
Data Types: char

MaxFunEvals — Maximum number of evaluations of model allowed
600 (default)

Maximum number of evaluations of the model allowed, specified as the comma-separated pair
consisting of 'MaxFunEvals' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

MaxIter — Maximum number of iterations allowed for fit
400 (default)

Maximum number of iterations allowed for the fit, specified as the comma-separated pair consisting
of 'MaxIter' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

TolFun — Termination tolerance on model value
10–6 (default)

Termination tolerance on the model value, specified as the comma-separated pair consisting of
'TolFun' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

TolX — Termination tolerance on coefficient values
10–6 (default)

Termination tolerance on the coefficient values, specified as the comma-separated pair consisting of
'TolX' and a scalar.

Available when the Method is NonlinearLeastSquares.
Data Types: double

Output Arguments
fitOptions — Algorithm options
options object

Algorithm options, returned as an options object.

 fitoptions

13-127

newOptions — New algorithm options
options object

New algorithm options, returned as an options object.

Version History
Introduced before R2006a

R2023a: fitoptions returns value objects
Behavior change in future release

Starting in R2023a, fitoptions returns value objects instead of handle objects. For more
information, see Comparison of Handle and Value Classes.

R2023a: Specify extrapolation method for surface interpolant fits

Starting in 2023a, you can specify the extrapolation method for interpolant fits by using the
ExtrapolationMethod name-value argument. For curve fits, Curve Fitting Toolbox supports only
the default extrapolation methods available in previous releases.

See Also
Apps
Curve Fitter

Functions
fit | fittype | get | set | setoptions

Topics
“Specify Fit Options and Optimized Starting Points” on page 4-5
“Fit Postprocessing”
“List of Library Models for Curve and Surface Fitting” on page 4-10

13 Functions

13-128

fittype
Fit type for curve and surface fitting

Syntax
aFittype = fittype(libraryModelName)

aFittype = fittype(expression)
aFittype = fittype(expression,Name,Value)

aFittype = fittype(linearModelTerms)
aFittype = fittype(linearModelTerms,Name,Value)

aFittype = fittype(anonymousFunction)
aFittype = fittype(anonymousFunction,Name,Value)

Description
aFittype = fittype(libraryModelName) creates the fittype object aFittype for the model
specified by libraryModelName.

aFittype = fittype(expression) creates a fit type for the model specified by the MATLAB
expression.

aFittype = fittype(expression,Name,Value) constructs the fit type with additional options
specified by one or more Name,Value pair arguments.

aFittype = fittype(linearModelTerms) creates a fit type for a custom linear model with
terms specified by the expressions in linearModelTerms.

aFittype = fittype(linearModelTerms,Name,Value) constructs the fit type with additional
options specified by one or more Name,Value pair arguments.

aFittype = fittype(anonymousFunction) creates a fit type for the model specified by
anonymousFunction.

aFittype = fittype(anonymousFunction,Name,Value) constructs the fit type with additional
options specified by one or more Name,Value pair arguments.

Examples

Create Fit Types for Library Models

Construct fit types by specifying library model names.

Construct a fittype object for the cubic polynomial library model.

f = fittype('poly3')

 fittype

13-129

f =
 Linear model Poly3:
 f(p1,p2,p3,p4,x) = p1*x^3 + p2*x^2 + p3*x + p4

Construct a fit type for the library model rat33 (a rational model of the third degree for both the
numerator and denominator).

f = fittype('rat33')

f =
 General model Rat33:
 f(p1,p2,p3,p4,q1,q2,q3,x) = (p1*x^3 + p2*x^2 + p3*x + p4) /
 (x^3 + q1*x^2 + q2*x + q3)

For a list of library model names, see libraryModelName.

Create Custom Nonlinear Models and Specify Problem Parameters and Independent
Variables

Construct fit types for custom nonlinear models, designating problem-dependent parameters and
independent variables.

Construct a fit type for a custom nonlinear model, designating n as a problem-dependent parameter
and u as the independent variable.

g = fittype('a*u+b*exp(n*u)',...
 'problem','n',...
 'independent','u')

g =
 General model:
 g(a,b,n,u) = a*u+b*exp(n*u)

Construct a fit type for a custom nonlinear model, designating time as the independent variable.

g = fittype('a*time^2+b*time+c','independent','time','dependent','height')

g =
 General model:
 g(a,b,c,time) = a*time^2+b*time+c

Construct a fit type for a logarithmic fit to some data, use the fit type to create a fit, and plot the fit.

x = linspace(1,100);
y = 5 + 7*log(x);
myfittype = fittype('a + b*log(x)',...
 'dependent',{'y'},'independent',{'x'},...
 'coefficients',{'a','b'})

myfittype =
 General model:
 myfittype(a,b,x) = a + b*log(x)

myfit = fit(x',y',myfittype)

Warning: Start point not provided, choosing random start point.

13 Functions

13-130

myfit =
 General model:
 myfit(x) = a + b*log(x)
 Coefficients (with 95% confidence bounds):
 a = 5 (5, 5)
 b = 7 (7, 7)

plot(myfit,x,y)

You can specify any MATLAB command and therefore any .m file.

Create Custom Linear Model

To use a linear fitting algorithm, specify a cell array of terms.

Identify the linear model terms you need to input to fittype: a*x + b*sin(x) + c. The model is
linear in a, b and c. It has three terms x, sin(x) and 1 (because c=c*1). To specify this model you
use this cell array of terms: LinearModelTerms = {'x','sin(x)','1'}.

Use the cell array of linear model terms as the input to fittype.

ft = fittype({'x','sin(x)','1'})

 fittype

13-131

ft =
 Linear model:
 ft(a,b,c,x) = a*x + b*sin(x) + c

Create a linear model fit type for a*cos(x) + b.

ft2 = fittype({'cos(x)','1'})

ft2 =
 Linear model:
 ft2(a,b,x) = a*cos(x) + b

Create the fit type again and specify coefficient names.

ft3 = fittype({'cos(x)','1'},'coefficients',{'a1','a2'})

ft3 =
 Linear model:
 ft3(a1,a2,x) = a1*cos(x) + a2

Fit a Curve Defined by a File

Define a function in a file and use it to create a fit type and fit a curve.

Define a function in a MATLAB file.

function y = piecewiseLine(x,a,b,c,d,k)
% PIECEWISELINE A line made of two pieces
% that is not continuous.

y = zeros(size(x));

% This example includes a for-loop and if statement
% purely for example purposes.
for i = 1:length(x)
 if x(i) < k,
 y(i) = a + b.* x(i);
 else
 y(i) = c + d.* x(i);
 end
end
end

Save the file.

Define some data, create a fit type specifying the function piecewiseLine, create a fit using the fit
type ft, and plot the results.

x = [0.81;0.91;0.13;0.91;0.63;0.098;0.28;0.55;...
 0.96;0.96;0.16;0.97;0.96];
y = [0.17;0.12;0.16;0.0035;0.37;0.082;0.34;0.56;...
 0.15;-0.046;0.17;-0.091;-0.071];
ft = fittype('piecewiseLine(x, a, b, c, d, k)')
f = fit(x, y, ft, 'StartPoint', [1, 0, 1, 0, 0.5])
plot(f, x, y)

13 Functions

13-132

Create Fit Types Using Anonymous Functions

Create a fit type using an anonymous function.

g = fittype(@(a, b, c, x) a*x.^2+b*x+c)

Create a fit type using an anonymous function and specify independent and dependent parameters.

g = fittype(@(a, b, c, d, x, y) a*x.^2+b*x+c*exp(...
 -(y-d).^2), 'independent', {'x', 'y'},...
 'dependent', 'z');

Create a fit type for a surface using an anonymous function and specify independent and dependent
parameters, and problem parameters that you will specify later when you call fit.

g = fittype(@(a,b,c,d,x,y) a*x.^2+b*x+c*exp(-(y-d).^2), ...
 'problem', {'c','d'}, 'independent', {'x', 'y'}, ...
 'dependent', 'z');

Use an Anonymous Function to Pass in Workspace Data to the Fit

Use an anonymous function to pass workspace data into the fittype and fit functions.

Create and plot an S-shaped curve. In later steps, you stretch and move this curve to fit to some data.

% Breakpoints.
xs = (0:0.1:1).';
% Height of curve at breakpoints.
ys = [0; 0; 0.04; 0.1; 0.2; 0.5; 0.8; 0.9; 0.96; 1; 1];
% Plot S-shaped curve.
xi = linspace(0, 1, 241);
plot(xi, interp1(xs, ys, xi, 'pchip'), 'LineWidth', 2)
hold on
plot(xs, ys, 'o', 'MarkerFaceColor', 'r')
hold off
title S-curve

Create a fit type using an anonymous function, taking the values from the workspace for the curve
breakpoints (xs) and the height of the curve at the breakpoints (ys). Coefficients are b (base) and h
(height).

ft = fittype(@(b, h, x) interp1(xs, b+h*ys, x, 'pchip'))

Plot the fittype specifying example coefficients of base b=1.1 and height h=-0.8.

plot(xi, ft(1.1, -0.8, xi), 'LineWidth', 2)
title 'Fittype with b=1.1 and h=-0.8'

Load and fit some data, using the fit type ft created using workspace values.

% Load some data
xdata = [0.012;0.054;0.13;0.16;0.31;0.34;0.47;0.53;0.53;...
 0.57;0.78;0.79;0.93];
ydata = [0.78;0.87;1;1.1;0.96;0.88;0.56;0.5;0.5;0.5;0.63;...
 0.62;0.39];
% Fit the curve to the data

 fittype

13-133

f = fit(xdata, ydata, ft, 'Start', [0, 1])
% Plot fit
plot(f, xdata, ydata)
title 'Fitted S-curve'

Use Anonymous Functions to Work with Problem Parameters and Workspace Variables

This example shows the differences between using anonymous functions with problem parameters
and workspace variable values.

Load data, create a fit type for a curve using an anonymous function with problem parameters, and
call fit specifying the problem parameters.

% Load some data.
xdata = [0.098;0.13;0.16;0.28;0.55;0.63;0.81;0.91;0.91;...
 0.96;0.96;0.96;0.97];
ydata = [0.52;0.53;0.53;0.48;0.33;0.36;0.39;0.28;0.28;...
 0.21;0.21;0.21;0.2];

% Create a fittype that has a problem parameter.
g = fittype(@(a,b,c,x) a*x.^2+b*x+c, 'problem', 'c')

% Examine coefficients. Observe c is not a coefficient.
coeffnames(g)

% Examine arguments. Observe that c is an argument.
argnames(g)

% Call fit and specify the value of c.
f1 = fit(xdata, ydata, g, 'problem', 0, 'StartPoint', [1, 2])

% Note: Specify start points in the calls to fit to
% avoid warning messages about random start points
% and to ensure repeatability of results.

% Call fit again and specify a different value of c,
% to get a new fit.
f2 = fit(xdata, ydata, g, 'problem', 1, 'start', [1, 2])

% Plot results. Observe the specified c constants
% do not make a good fit.
plot(f1, xdata, ydata)
hold on
plot(f2, 'b')
hold off

Modify the previous example to create the same fits using workspace values for variables, instead of
using problem parameters. Using the same data, create a fit type for a curve using an anonymous
function with a workspace value for variable c:

% Remove c from the argument list.
try
 g = fittype(@(a,b,x) a*x.^2+b*x+c)
catch e
 disp(e.message)
end

13 Functions

13-134

% Observe error because now c is undefined.
% Define c and create fittype:
c = 0;
g1 = fittype(@(a,b,x) a*x.^2+b*x+c)

% Call fit (now no need to specify problem parameter).
f1 = fit(xdata, ydata, g1, 'StartPoint', [1, 2])
% Note that this f1 is the same as the f1 above.
% To change the value of c, recreate the fittype.
c = 1;
g2 = fittype(@(a,b,x) a*x.^2+b*x+c) % uses c = 1
f2 = fit(xdata, ydata, g2, 'StartPoint', [1, 2])
% Note that this f2 is the same as the f2 above.
% Plot results
plot(f1, xdata, ydata)
hold on
plot(f2, 'b')
hold off

Input Arguments
libraryModelName — Library model to fit
character vector | string scalar

Library model to fit, specified as a character vector or string scalar. This table shows some common
examples.

Library Model Name Description
'poly1' Linear polynomial curve
'poly11' Linear polynomial surface
'poly2' Quadratic polynomial curve
'linearinterp' Piecewise linear interpolation
'cubicinterp' Piecewise cubic interpolation
'smoothingspline' Smoothing spline (curve)
'lowess' Local linear regression (surface)

For a list of library model names, see “Model Names and Equations” on page 4-11.
Example: 'poly2'
Data Types: char | string

expression — Model to fit
character vector | string scalar

Model to fit, specified as a character vector or string scalar. You can specify any MATLAB command
and therefore any .m file. See “Fit a Curve Defined by a File” on page 13-132.
Data Types: char | string

linearModelTerms — Model to fit
cell array of character vectors | string array

 fittype

13-135

Model to fit, specified as a cell array of character vectors or a string array. Specify the model terms
by the expressions in the character vectors or string scalars. Do not include coefficients in the
expressions for the terms. See “Linear Model Terms” on page 13-138.
Data Types: cell

anonymousFunction — Model to fit
anonymous function

Model to fit, specified as an anonymous function. For details, see “Input Order for Anonymous
Functions” on page 13-137.
Data Types: char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'coefficients',{'a1','a2'}

coefficients — Coefficient names
character vector | string scalar | cell array of character vectors | string array

Coefficient names, specified as the comma-separated pair consisting of 'coefficients' and a
character vector, string scalar, cell array of character vectors, or string array. You can use
multicharacter symbol names. You cannot use these names: i, j, pi, inf, nan, eps.
Data Types: char | string | cell

dependent — Dependent (response) variable name
y (default) | character vector | string scalar

Dependent (response) variable name, specified as the comma-separated pair consisting of
'dependent' and a character vector or string scalar. If you do not specify the dependent variable,
the function assumes y is the dependent variable.
Data Types: char | string

independent — Independent (response) variable names
x (default) | character vector | string scalar | cell array of character vectors | string array

Independent (response) variable names, specified as the comma-separated pair consisting of
'independent' and a character vector, string scalar, cell array of character vectors, or string array.
If you do not specify the independent variable, the function assumes x is the independent variable.
Data Types: char | string | cell

options — Fit options
fitoptions

Fit options, specified as the comma-separated pair consisting of 'options' and the name of a
fitoptions object.

13 Functions

13-136

problem — Problem-dependent (fixed) parameter names
character vector | string scalar | cell array or character vectors | string array

Problem-dependent (fixed) parameter names, specified as the comma-separated pair consisting of
'problem' and a character vector, string scalar, cell array of character vectors, or string array with
one element per problem dependent constant.
Data Types: char | string | cell

Output Arguments
aFittype — Model to fit
fittype object

Model to fit, returned as a fittype. A fittype encapsulates information describing a model. To
create a fit, you need data, a fittype, and (optionally) fitoptions and an exclusion rule. You can
use a fittype as an input to the fit function.

More About
Dependent and Independent Variables

How do I decide which variables are dependent and independent?

To determine dependent and independent variables and coefficients, consider this equation:

y = f (x) = a + (b * x) + (c * x2).

• y is the dependent variable.
• x is the independent variable.
• a, b, and c are the coefficients.

The 'independent' variable is what you control. The 'dependent' variable is what you measure,
i.e., it depends on the independent variable. The 'coefficients' are the parameters that the
fitting algorithm estimates.

For example, if you have census data, then the year is the independent variable because it does not
depend on anything. Population is the dependent variable, because its value depends on the year in
which the census is taken. If a parameter like growth rate is part of the model, so the fitting
algorithm estimates it, then the parameter is one of the 'coefficients'.

The fittype function determines input arguments by searching the fit type expression input for
variable names. fittype assumes x is the independent variable, y is the dependent variable, and all
other variables are coefficients of the model. x is used if no variable exists.

Input Order for Anonymous Functions

If the fit type expression input is an anonymous function, then the order of inputs must be correct.
The input order enables the fittype function to determine which inputs are coefficients to estimate,
problem-dependent parameters, and independent variables.

The order of the input arguments to the anonymous function must be:

fcn = @(coefficients,problemparameters,x,y) expression

 fittype

13-137

You need at least one coefficient. The problem parameters and y are optional. The last arguments, x
and y, represent the independent variables: just x for curves, but x and y for surfaces. If you don't
want to use x and/or y to name the independent variables, then specify different names using the
'independent' argument name-value pair. However, whatever name or names you choose, these
arguments must be the last arguments to the anonymous function.

Anonymous functions make it easier to pass other data into the fittype and fit functions.

1 Create a fit type using an anonymous function and a variable value (c) from the workspace.

c = 1;
 g = fittype(@(a, b, x) a*x.^2+b*x+c)

2 The fittype function can use the variable values in your workspace when you create the fit
type. To pass in new data from the workspace, recreate the fit type, e.g.,

c = 5 % Change value of c.
g = fittype(@(a, b, x) a*x.^2+b*x+c)

3 Here, the value of c is fixed when you create the fit type. To specify the value of c at the time you
call fit, you can use problem parameters. For example, make a fit with c = 2 and then a new fit
with c = 3.

g = fittype(@(a,b,x,c) a*x.^2+b*x+c, 'problem', 'c')
f1 = fit(xdata, ydata, g, 'problem', 2)
f2 = fit(xdata, ydata, g, 'problem', 3)

Linear Model Terms

How do I define linear model terms?

To use a linear fitting algorithm, specify linearModelTerms as a cell array or string array of terms.
For example:

afittype = fittype({expr1,...,exprn})

Specify the model terms by the expressions in the character vectors expr2,...,exprn. Do not
include coefficients in the expressions for the terms. If there is a constant term, use '1' as the
corresponding expression in the cell array.

To specify a linear model of the following form:

 coeff1 * term1 + coeff2 * term2 + coeff3 * term3 + ...

where no coefficient appears within any of term1, term2, etc., use a cell array or string array where
each term, without coefficients, is specified in a cell or element of expr, as follows:

LinearModelTerms = {'term1', 'term2', 'term3', ... }

For example, the model

a*x + b*sin(x) + c

is linear in a, b, and c. It has three terms x, sin(x) and 1 (because c=c*1) and therefore expr is:

LinearModelTerms = {'x','sin(x)','1'}

In the Curve Fitter app, select a Linear Fitting fit in the Custom group in the Fit Type section.

13 Functions

13-138

Algorithms
If the fit type expression input is a character vector, string scalar, or anonymous function, then the
toolbox uses a nonlinear fitting algorithm to fit the model to data.

If the fit type expression input is a cell array or string array of terms, then the toolbox uses a linear
fitting algorithm to fit the model to data.

Version History
Introduced before R2006a

See Also
Functions
fit | fitoptions

Apps
Curve Fitter

Topics
“Custom Linear Fitting” on page 5-7
“Parametric Fitting” on page 4-2

 fittype

13-139

fn2fm
Convert to specified form

Syntax
g = fn2fm(f,form)
sp = fn2fm(f,'B-',sconds)
fn2fm(f)

Description
g = fn2fm(f,form) describes the same function as is described by f, but in the form specified by
the character vector or string scalar form. Choices for form are 'B-', 'pp', 'BB', 'rB', 'rp', for
the B-form, the ppform, the BBform, and the two rational spline forms, respectively.

The B-form describes a function as a weighted sum of the B-splines of a given order k for a given knot
sequence, and the BBform (or, Bernstein-Bézier form) is the special case when each knot in that
sequence appears with maximal multiplicity, k. The ppform describes a function in terms of its local
polynomial coefficients. The B-form is good for constructing and/or shaping a function, while the
ppform is cheaper to evaluate.

Conversion from a polynomial form to the corresponding rational form is possible only if the function
in the polynomial form is vector-valued, in which case its last component is designated as the
denominator. Converting from a rational form to the corresponding polynomial form simply reverses
this process by reinterpreting the denominator of the function in the rational form as an additional
component of the piecewise polynomial function.

Conversion to or from the stform is not possible at present.

If form is 'B-' (and f is in ppform), then the actual smoothness of the function in f across each of
its interior breaks has to be guessed. This is done by looking, for each interior break, for the first
derivative whose jump across that break is not small compared to the size of that derivative nearby.
The default tolerance used in this is 1.e-12.

sp = fn2fm(f,'B-',sconds) permits you to supply, as the input argument sconds, a tolerance
(strictly between 0 and 1) to be used in the conversion from ppform to B-form.

Alternatively, you can input sconds as a vector with integer entries, with at least as many entries as
the ppform in f has interior breaks. In that case, sconds(i) specifies the number of smoothness
conditions to be used across the ith interior break. If the function in f is a tensor product, then
sconds, if given, must be a cell array.

fn2fm(f) converts a possibly old version of a form into its present version.

Examples
sp = fn2fm(spline(x,y),'B-') gives the interpolating cubic spline provided by the MATLAB
command spline, but in B-form rather than in ppform.

13 Functions

13-140

p0 = ppmak([0 1],[3 0 0]);
p1 = fn2fm(fn2fm(fnrfn(p0,[.4 .6]),'B-'),'pp');

gives p1 identical to p0 (up to round-off in the coefficients) since the spline has no discontinuity in
any derivative across the additional breaks introduced by fnrfn, hence conversion to B-form ignores
these additional breaks, and conversion to ppform does not retain any knot multiplicities (like the
knot multiplicities introduced, by conversion to B-form, at the endpoints of the spline's basic interval).

Cautionary Note
When going from B-form to ppform, any jump discontinuity at the first and last knot, t(1) or
t(end), will be lost since the ppform considers f to be defined outside its basic interval by extension
of the first, respectively, the last polynomial piece. For example, while sp=spmak([0 1],1) gives
the characteristic function of the interval [0..1], pp=fn2fm(spmak([0 1],1),'pp') is the constant
polynomial, x|→1.

Algorithms
For a multivariate (tensor-product) function, univariate algorithms are applied in each variable.

For the conversion from B-form (or BBform) to ppform, the utility command sprpp is used to convert
the B-form of all polynomial pieces to their local power form, using repeated knot insertion at the left
endpoint.

The conversion from B-form to BBform is accomplished by inserting each knot enough times to
increase its multiplicity to the order of the spline.

The conversion from ppform to B-form makes use of the dual functionals discussed in “Types of
Splines: ppform and B-form” on page 10-2. Without further information, such a conversion has to
ascertain the actual smoothness across each interior break of the function in f.

See Also
ppmak | spmak | rsmak | stmak

 fn2fm

13-141

fnbrk
Name and part(s) of form

Syntax
[out1,...,outn] = fnbrk(f,part1,...,partm)
fnbrk(f,interval)
fnbrk(pp,j)
fnbrk(f)

Description
[out1,...,outn] = fnbrk(f,part1,...,partm) returns the part(s) of the form in f specified
by part1,...,partn (assuming that n<=m). These are the parts used when the form was put
together, in spmak or ppmak or rpmak or rsmak or stmak, but also other parts derived from these.

You only need to specify the beginning character(s) of the relevant option.

Regardless of what particular form f is in, parti can be one of the following, specified as a character
vector or string scalar.

'form' The particular form used
'variables' The dimension of the function's domain
'dimension' The dimension of the function's target
'coefficients' The coefficients in that particular form
'interval' The basic interval of that form

Depending on the form in f, additional parts may be asked for.

If f is in B-form (or BBform or rBform), then additional choices for parti are

'knots' The knot sequence
'coefficients' The B-spline coefficients
'number' The number of coefficients
'order' The polynomial order of the spline

If f is in ppform (or rpform), then additional choices for parti are

'breaks' The break sequence
'coefficients' The local polynomial coefficients
'pieces' The number of polynomial pieces
'order' The polynomial order of the spline
'guide' The local polynomial coefficients, but in the form needed for

PPVALU in PGS

13 Functions

13-142

If the function in f is multivariate, then the corresponding multivariate parts are returned. This
means, e.g., that knots, breaks, and the basic interval, are cell arrays, the coefficient array is, in
general, higher than two-dimensional, and order, number and pieces are vectors.

If f is in stform, then additional choices for parti are

'centers' The centers
'coefficients' The coefficients
'number' Number of coefficients or terms
'type' The particular type

fnbrk(f,interval) with interval a 1-by-2 matrix [a b] with a<b does not return a particular
part. Rather, it returns a description of the univariate function described by f and in the same form
but with the basic interval changed, to the interval given. If, instead, interval is [], f is returned
unchanged. This is of particular help when the function in f is m-variate, in which case interval
must be a cell array with m entries, with the ith entry specifying the desired interval in the ith
dimension. If that ith entry is [], the basic interval in the ith dimension is unchanged.

fnbrk(pp,j), with pp the ppform of a univariate function and j a positive integer, does not return a
particular part, but returns the ppform of the jth polynomial piece of the function in pp. If pp is the
ppform of an m-variate function, then j must be a cell array of length m. In that case, each entry of j
must be a positive integer or else an interval, to single out a particular polynomial piece or else to
specify the basic interval in that dimension.

fnbrk(f) returns nothing, but a description of the various parts of the form is printed at the
command line instead.

Examples
If p1 and p2 contain the B-form of two splines of the same order, with the same knot sequence, and
the same target dimension, then

p1plusp2 = spmak(fnbrk(p1,'k'),fnbrk(p1,'c')+fnbrk(p2,'c'));

provides the (pointwise) sum of those two functions.

If pp contains the ppform of a bivariate spline with at least four polynomial pieces in the first
variable, then ppp=fnbrk(pp,{4,[-1 1]}) gives the spline that agrees with the spline in pp on
the rectangle [b4 .. b5] x [-1 .. 1] , where b4, b5 are the fourth and fifth entry in the break sequence
for the first variable.

See Also
ppmak | rpmak | rsmak | spmak | stmak

 fnbrk

13-143

fnchg
Change part(s) of form

Syntax
f = fnchg(f,part,value)

Description
f = fnchg(f,part,value) returns the given function description f but with the specified part
changed to the specified value.

The character vector or string scalar part can be (the beginning character(s) of) :

'dimension' The dimension of the function's target
'interval' The basic interval of that form

The specified value for part is not checked for consistency with the rest of the description in f in
case the character vector or string scalar part terminates with the letter z.

Examples
fndir(f,directions) returns a vector-valued function even when the function described by f is
ND-valued. You can correct this by using fnchg as follows:

fdir = fnchg(fndir(f,directions),...
 'dim',[fnbrk(f,'dim'),size(directions,2)]);

See Also
fnbrk

13 Functions

13-144

fncmb
Arithmetic with function(s)

Syntax
fn = fncmb(function,operation)
f = fncmb(function,function)
fncmb(function,matrix,function)
fncmb(function,matrix,function,matrix)
f = fncmb(function,op,function)

Description
The intent is to make it easy to carry out the standard linear operations of scaling and adding within a
spline space without having to deal explicitly with the relevant parts of the function(s) involved.

fn = fncmb(function,operation) returns (a description of) the function obtained by applying to
the values of the function in function the operation specified by operation. The nature of the
operation depends on whether operation is a scalar, a vector, a matrix, or a character vector or
string scalar, as follows.

Scalar Multiply the function by that scalar.
Vector Add that vector to the function's values; this requires the

function to be vector-valued.
Matrix Apply that matrix to the function's coefficients.
Character vector or string scalar Apply the function specified by that character vector or string

scalar to the function's coefficients.

The remaining options only work for univariate functions. See Limitations for more information.

f = fncmb(function,function) returns (a description of) the pointwise sum of the two
functions. The two functions must be of the same form. This particular case of just two input
arguments is not included in the above table since it only works for univariate functions.

fncmb(function,matrix,function) is the same as
fncmb(fncmb(function,matrix),function).

fncmb(function,matrix,function,matrix) is the same as
fncmb((fncmb(function,matrix),fncmb(function,matrix))).

f = fncmb(function,op,function) returns the ppform of the spline obtained by the pointwise
combining of the two functions, as specified by the character vector or string scalar op. The
argument op can be one of '+', '-', or '*'. If the second function is to be a constant, it is sufficient
simply to supply here that constant.

Examples
fncmb(fn,3.5) multiplies (the coefficients of) the function in fn by 3.5.

 fncmb

13-145

fncmb(f,3,g,-4) returns the linear combination, with weights 3 and –4, of the function in f and
the function in g.

fncmb(f,3,g) adds 3 times the function in f to the function in g.

If the function f in f happens to be scalar-valued, then f3=fncmb(f,[1;2;3])contains the
description of the function whose value at x is the 3-vector (f(x), 2f(x), 3f(x)). Note that, by the
convention throughout this toolbox, the subsequent statement fnval(f3, x) returns a 1-column-matrix.

If f describes a surface in R3, i.e., the function in f is 3-vector-valued bivariate, then f2 = fncmb(f,
[1 0 0;0 0 1]) describes the projection of that surface to the (x, z)-plane.

The following commands produce the picture of a ... spirochete?

c = rsmak('circle');
fnplt(fncmb(c,diag([1.5,1]))); axis equal, hold on
sc = fncmb(c,.4);
fnplt(fncmb(sc,-[.2;-.5]))
fnplt(fncmb(sc,-[.2,-.5]))
hold off, axis off

If t is a knot sequence of length n+k and a is a matrix with n columns, then
fncmb(spmak(t,eye(n)),a) is the same as spmak(t,a).

fncmb(spmak([0:4],1),'+',ppmak([-1 5],[1 -1])) is the piecewise-polynomial with breaks
-1:5 that, on the interval [0 .. 4], agrees with the function x|→ B(x|0,1,2,3,4) + x (but has no active
break at 0 or 1, hence differs from this function outside the interval [0 .. 4]).

fncmb(spmak([0:4],1),'-',0) has the same effect as fn2fm(spmak([0:4],1),'pp').

Assuming that sp describes the B-form of a spline of order <k, the output of

 fn2fm(fncmb(sp,'+',ppmak(fnbrk(sp,'interv'),zeros(1,k))),'B-')

describes the B-form of the same spline, but with its order raised to k.

Limitations
fncmb only works for univariate functions, except for the case fncmb(function,operation), i.e.,
when there is just one function in the input.

Further, if two functions are involved, then they must be of the same type. This means that they must
either both be in B-form or both be in ppform, and, moreover, have the same knots or breaks, the
same order, and the same target. The only exception to this is the command of the form
fncmb(function,op,function).

Algorithms
The coefficients are extracted (via fnbrk) and operated on by the specified matrix or operation (and,
possibly, added), then recombined with the rest of the function description (via ppmak,
spmak,rpmak,rsmak,stmak). To be sure, when the function is rational, the matrix is only applied to
the coefficients of the numerator. Again, if we are to translate the function values by a given vector
and the function is in ppform, then only the coefficients corresponding to constant terms are so
translated.

13 Functions

13-146

If there are two functions input, then they must be of the same type (see Limitations, below) except
for the following.

fncmb(f1,op,f2) returns the ppform of the function

x f1(x) op f2(x)

with op one of '+', '-', '*', and f1, f2 of arbitrary polynomial form. If, in addition, f2 is a scalar
or vector, it is taken to be the function that is constantly equal to that scalar or vector.

 fncmb

13-147

fnder
Differentiate function

Syntax
fprime = fnder(f,dorder)
fnder(f)

Description
fprime = fnder(f,dorder) returns the dorder-th derivative of the function in f. The default
value of dorder is 1. For negative dorder, the particular |dorder|-th indefinite integral is returned
that vanishes |dorder|-fold at the left endpoint of the basic interval.

The output is of the same form as the input, they are either both ppforms, or both B-forms, or both
stforms.

If the function in f is m-variate, then dorder must be given, and must be of length m.

Also:

• If f is in ppform, or in B-form with its last knot of sufficiently high multiplicity, then, up to
rounding errors, f and fnder(fnint(f)) are the same.

• If f is in ppform and fa is the value of the function in f at the left end of its basic interval, then,
up to rounding errors, f and fnint(fnder(f),fa) are the same, unless the function described
by f has jump discontinuities.

• If f contains the B-form of f, and t1 is its leftmost knot, then, up to rounding errors,
fnint(fnder(f)) contains the B-form of f – f(t1). However, its leftmost knot will have lost one
multiplicity (if it had multiplicity > 1 to begin with). Also, its rightmost knot will have full
multiplicity even if the rightmost knot for the B-form of f in f doesn't. To verify this, create a
spline, sp = spmak([0 0 1], 1). This spline is, on its basic interval [0..1], the straight line
that is 1 at 0 and 0 at 1. Now integrate its derivative: spdi = fnint(fnder(sp)). The spline in
spdi has the same basic interval, but, on that interval, it agrees with the straight line that is 0 at
0 and –1 at 1.

fnder(f) is the same as fnder(f,1).

Examples

B-splines with Simple Knots and Their Derivatives

This example shows how to calculate the first and second order derivative functions of three B-splines
of order 2, 3, and 4. Then it plots the splines, and their derivatives, and compares the results.

% Create the knots sequences
t1 = [0 .8 2];
t2 = [3 4.4 5 6];
t3 = [7 7.9 9.2 10 11];

13 Functions

13-148

tt = [t1 t2 t3];

% Accessory variables and commands for plotting purposes
cl = ['g','r','b','k','k'];
v = 5.4; d1 = 2.5; d2 = 0; s1 = 1; s2 = .5;
ext = tt([1 end])+[-.5 .5];
plot(ext([1 2]),[v v],cl(5))
hold on
plot(ext([1 2]),[d1 d1],cl(5))
plot(ext([1 2]),[d2 d2],cl(5))
ts = [tt;tt;NaN(size(tt))];
ty = repmat(.2*[-1;0;NaN],size(tt));
plot(ts(:),ty(:)+v,cl(5))
plot(ts(:),ty(:)+d1,cl(5))
plot(ts(:),ty(:)+d2,cl(5))

% Spline 1 (linear)
b1 = spmak(t1,1);
p1 = [t1;0 1 0];
% Calculate the first and second derivative of spline 1
db1 = fnder(b1);
p11 = fnplt(db1,'j');
p12 = fnplt(fnder(db1));
lw = 2;
plot(p1(1,:),p1(2,:)+v,cl(2),'LineWidth',lw)
plot(p11(1,:),s1*p11(2,:)+d1,cl(2),'LineWidth',lw)
plot(p12(1,:),s2*p12(2,:)+d2,cl(2),'LineWidth',lw)

% Spline 2 (quadratic)
b1 = spmak(t2,1);
p1 = fnplt(b1);
% Calculate the first and second derivative of spline 2
db1 = fnder(b1);
p11 = [t2;fnval(db1,t2)];
p12 = fnplt(fnder(db1),'j');
plot(p1(1,:),p1(2,:)+v,cl(3),'LineWidth',lw)
plot(p11(1,:),s1*p11(2,:)+d1,cl(3),'LineWidth',lw)
plot(p12(1,:),s2*p12(2,:)+d2,cl(3),'LineWidth',lw)

% Spline 3 (cubic)
b1 = spmak(t3,1);
p1 = fnplt(b1);
% Calculate the first and second derivative of spline 3
db1 = fnder(b1);
p11 = fnplt(db1);
p12=[t3;fnval(fnder(db1),t3)];
plot(p1(1,:),p1(2,:)+v,cl(4),'LineWidth',lw)
plot(p11(1,:),s1*p11(2,:)+d1,cl(4),'LineWidth',lw)
plot(p12(1,:),s2*p12(2,:)+d2,cl(4),'LineWidth',lw)

% Formatting the plot
tey = v+1.5;
text(t1(2)-.5,tey,'linear','FontSize',12,'Color',cl(2))
text(t2(2)-.8,tey,'quadratic','FontSize',12,'Color',cl(3))
text(t3(3)-.5,tey,'cubic','FontSize',12,'Color',cl(4))
text(-2,v,'B','FontSize',12)
text(-2,d1,'DB','FontSize',12)
text(-2,d2,'D^2B')

 fnder

13-149

axis([-1 12 -2 7.5])
title({'B-splines with Simple Knots and Their Derivatives'})
axis off
hold off

Input Arguments
f — Spline function
spline structure

Spline in either ppform, B-form or stform, specified as a structure with these fields:

Form — Form of spline
pp | B- | tp00

Form of the spline, returned as pp, B-, or tp00. pp indicates that the spline is given in piecewise
polynomial form, B- indicates that the spline is given in B-form, and tp00 indicates that the spline is
given in stform.

Knots — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

13 Functions

13-150

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Number — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

dorder — Derivative order
scalar | vector

Order of the derivative of the function f, specified as a scalar or vector for multivariate functions.
Data Types: single | double

Output Arguments
fprime — Derivative function
spline structure

Derivative function of the f spline in either ppform, B-form, or stform, returned as a structure with
these fields:

Form — Form of spline
pp | B- | tp00

Form of the spline, returned as pp, B-, or tp00. The form of the derivative function is the same as the
form of the f function. pp indicates that the spline is given in piecewise polynomial form, B- indicates
that the spline is given in B-form, and tp00 indicates that the spline is given in stform.

Knots — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

 fnder

13-151

Number — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

Limitations
• The fnder function does not work with rational splines. To work with rational splines, use the

fntlr function instead.
• The fnder function works for stforms only in a limited way: if the type is tp00, then dorder can

be [1,0] or [0,1].

Algorithms
For differentiation of either polynomial form, the fnder function finds the derivatives in the
piecewise-polynomial sense. The function differentiates each polynomial piece separately, and ignores
jump discontinuities between polynomial pieces during differentiation.

For the B-form, the function uses the [PGS; (X.10)] formulas for differentiation.

For the stform, differentiation relies on knowing a formula for the relevant derivative of the basis
function of the particular type.

Version History
Introduced before R2006a

See Also
fndir | fnint | fnplt | fnval

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-152

fndir
Directional derivative of function

Syntax
df = fndir(f,y)

Description
df = fndir(f,y) is the ppform of the directional derivative, of the function f in f, in the direction
of the (column-)vector y. This means that df describes the function
Dyf (x): = limt 0(f (x + ty)− f (x))/t.

If y is a matrix, with n columns, and f is d-valued, then the function in df is prod(d)*n-valued. Its
value at x, reshaped to be of size [d,n], has in its jth “column” the directional derivative of f at x in
the direction of the jth column of y. If you prefer df to reflect explicitly the actual size of f, use
instead

df = fnchg(fndir(f,y), 'dim',[fnbrk(f,'dim'),size(y,2)]);

Since fndir relies on the ppform of the function in f, it does not work for rational functions nor for
functions in stform.

Examples
For example, if f describes an m-variate d-vector-valued function and x is some point in its domain,
then, e.g., with this particular ppform f that describes a scalar-valued bilinear polynomial,

f = ppmak({0:1,0:1},[1 0;0 1]); x = [0;0];
[d,m] = fnbrk(f,'dim','var');
jacobian = reshape(fnval(fndir(f,eye(m)),x),d,m)

is the Jacobian of that function at that point (which, for this particular scalar-valued function, is its
gradient, and it is zero at the origin).

As a related example, the next statements plot the gradients of (a good approximation to) the Franke
function at a regular mesh:

xx = linspace(-.1,1.1,13); yy = linspace(0,1,11);
[x,y] = ndgrid(xx,yy); z = franke(x,y);
pp2dir = fndir(csapi({xx,yy},z),eye(2));
grads = reshape(fnval(pp2dir,[x(:) y(:)].'),...
 [2,length(xx),length(yy)]);
quiver(x,y,squeeze(grads(1,:,:)),squeeze(grads(2,:,:)))

Here is the resulting plot.

 fndir

13-153

Algorithms
The function in f is converted to ppform, and the directional derivative of its polynomial pieces is
computed formally and in one vector operation, and put together again to form the ppform of the
directional derivative of the function in f.

See Also
fnchg | fnder | fnint | franke

13 Functions

13-154

fnint
Integrate function

Syntax
intgrf = fnint(f,value)
fnint(f)

Description
intgrf = fnint(f,value) is the description of an indefinite integral of the univariate function
whose description is contained in f. The integral is normalized to have the specified value at the left
endpoint of the function's basic interval, with the default value being zero.

The output is of the same type as the input, i.e., they are both ppforms or both B-forms. fnint does
not work for rational splines nor for functions in stform.

fnint(f) is the same as fnint(f,0).

Indefinite integration of a multivariate function, in coordinate directions only, is available via
fnder(f,dorder) with dorder having nonpositive entries.

Examples
The statement diff(fnval(fnint(f),[a b])) provides the definite integral over the interval
[a .. b] of the function described by f.

If f is in ppform, or in B-form with its last knot of sufficiently high multiplicity, then, up to rounding
errors, f and fnder(fnint(f)) are the same.

If f is in ppform and fa is the value of the function in f at the left end of its basic interval, then, up to
rounding errors, f and fnint(fnder(f),fa) are the same, unless the function described by f has
jump discontinuities.

If f contains the B-form of f, and t1 is its leftmost knot, then, up to rounding errors,
fnint(fnder(f)) contains the B-form of f – f(t1). However, its leftmost knot will have lost one
multiplicity (if it had multiplicity > 1 to begin with). Also, its rightmost knot will have full multiplicity
even if the rightmost knot for the B-form of f in f doesn't.

Here is an illustration of this last fact. The spline in sp = spmak([0 0 1], 1) is, on its basic
interval [0..1], the straight line that is 1 at 0 and 0 at 1. Now integrate its derivative: spdi =
fnint(fnder(sp)). As you can check, the spline in spdi has the same basic interval, but, on that
interval, it agrees with the straight line that is 0 at 0 and -1 at 1.

See the examples “Intro to B-form” and “Intro to ppform” for examples.

Algorithms
For the B-form, the formula [PGS; (X.22)] for integration is used.

 fnint

13-155

See Also
fnder | fnplt | fnval

13 Functions

13-156

fnjmp
Jumps, i.e., f(x+)-f(x-)

Syntax
jumps = fnjmp(f,x)

Description
jumps = fnjmp(f,x) is like fnval(f,x) except that it returns the jump f(x+) – f(x–) across x
(rather than the value at x) of the function f described by f and that it only works for univariate
functions.

This is a function for spline specialists.

Examples
fnjmp(ppmak(1:4,1:3),1:4) returns the vector [0,1,1,0] since the pp function here is 1 on
[1 .. 2], 2 on [2 .. 3], and 3 on [3 .. 4], hence has zero jump at 1 and 4 and a jump of 1 across both 2
and 3.

If x is cos([4:-1:0]*pi/4), then fnjmp(fnder(spmak(x,1),3),x) returns the vector [12 -24
24 -24 12] (up to round-off). This is consistent with the fact that the spline in question is a so called
perfect cubic B-spline, i.e., has an absolutely constant third derivative (on its basic interval). The
modified command

fnjmp(fnder(fn2fm(spmak(x,1),'pp'),3),x)

returns instead the vector [0 -24 24 -24 0], consistent with the fact that, in contrast to the B-
form, a spline in ppform does not have a discontinuity in any of its derivatives at the endpoints of its
basic interval. Note that fnjmp(fnder(spmak(x,1),3),-x) returns the vector [12,0,0,0,12]
since -x, though theoretically equal to x, differs from x by round-off, hence the third derivative of the
B-spline provided by spmak(x,1) does not have a jump across -x(2),-x(3), and -x(4).

 fnjmp

13-157

fnmin
Minimum of function in given interval

Syntax
fnmin(f)
fnmin(f,interv)
[minval,minsite] = fnmin(f,...)

Description
fnmin(f) returns the minimum value of the scalar-valued univariate spline in f on its basic interval.

fnmin(f,interv) returns the minimum value of the scalar-valued univariate spline in f on the
interval [a..b] specified by interv.

[minval,minsite] = fnmin(f,...) also returns a location, minsite, at which the function in f
takes that minimum value, minval.

Examples

Compute the Maximum and Minimum Values of a Spline

This example shows how to calculate the maximum and minimum values of a spline in f using the
fnmin function.

Calculate the Maximum Value

Construct and plot a spline f with 21 knots and 15 random coefficients.

f = spmak(1:21,rand(1,15)-.5);
fnplt(f)

Compute the maximum value of f as the negative of the minimum of -f, then plot it as a horizontal
line at the height of the computed maximum.

maxval = -fnmin(fncmb(f,-1));
hold on, plot(fnbrk(f,'interv'),maxval([1 1])), hold off

13 Functions

13-158

Calculate the Minimum Value

Construct and plot a spline using the spmak function.

f2 = spmak(1:5,-1);
fnplt(f2)

 fnmin

13-159

Compute the minimum value of f2 and the site at which the spline takes on this minimum value.

[y,x] = fnmin(spmak(1:5,-1))

y = -0.6667

x = 3

Input Arguments
f — Spline structure
structure

Structure of a spline with the fields:

form — Polynomial spline representation
char

Form of the spline, returned as char.

knots — Knot sequence
vector

Non-decreasing sequence of the knots of the spline, returned as a vector.

coefs — Coefficients of spline
scalar | vector | matrix

13 Functions

13-160

Coefficients of the spline, returned as a scalar, vector, matrix.

number — Spline number
scalar

Number of pieces of the spline, returned as a scalar.

order — Spline order
scalar

Order of the spline, returned as a scalar.

dim — Dimension of coefficients
scalar

Dimension of the coefficients of the spline, returned as a scalar.

interv — Searching interval
vector (default)

Range of values where the function computes the minimum value of f, specified as a vector.
Data Types: single | double

Output Arguments
minval — Minimum value of spline
scalar

Minimum value of the scalar-valued univariate spline in f, returned as a scalar.

minsite — Site of minimum value
scalar

Site at which the spline in f takes on the minimum value, minval, returned as a scalar.

Algorithms
The fnmin algorithm first changes the basic interval of the function to the given interval, if any. On
the interval, fnmin then finds all local extrema of the function as left and right limits at a jump and as
zeros of the function's first derivative. It then evaluates the function at these extrema and at the
endpoints of the interval, and determines the minimum over all these values.

Version History
Introduced in R2006b

See Also
fnval on page 13-170 | fnzeros on page 13-180

Topics
“Introducing Spline Fitting” on page 8-2

 fnmin

13-161

fnplt
Plot function

Syntax
fnplt(f)
fnplt(f,symbol,interv,linewidth,jumps)
points = fnplt(f,...)
[points, t] = fnplt(f,...)

Description
fnplt(f) plots the function in f on its basic interval.

If f is univariate, then:

• If f is scalar-valued, fnplt plots the graph of f.
• If f is 2-vector-valued, fnplt plots the planar curve.
• If f is d-vector-valued with d > 2, fnplt plots the space curve given by the first three components

of f.

If f is bivariate, then:

• If f is scalar-valued, fnplt plots the graph of f, using surf.
• If f is 2-vector-valued, fnplt plots the image in the plane of a regular grid in its domain.
• If f is d-vector-valued with d > 2, fnplt plots the parametric surface given by the first three

components of its values, using surf.

If f is a function of more than two variables, then fnplt plots the bivariate function, obtained by
choosing the midpoint of the basic interval in each of the variables other than the first two.

Note The basic interval for f in B-form is the interval containing all the knots. This means that f is
sure to vanish at the endpoints of the basic interval unless the first and the last knot are both of full
multiplicity k, with k the order of the spline f. Failure to have such full multiplicity is particularly
annoying when f is a spline curve, since the plot of that curve as produced by fnplt is then bound to
start and finish at the origin, regardless of what the curve might otherwise do.

Further, since B-splines are zero outside their support, any function in B-form is zero outside the
basic interval of its form. This is very much in contrast to a function in ppform whose values outside
the basic interval of the form are given by the extension of its leftmost, respectively rightmost,
polynomial piece.

fnplt(f,symbol,interv,linewidth,jumps) permits you to modify the plotting by the
specification of additional input arguments. You can place these arguments in whatever order you
like, from the following list:

• A character vector or string scalar that specifies a plotting symbol, such as '-.' or '*'; the
default is '-'.

13 Functions

13-162

• A scalar to specify the linewidth; the default value is 1.
• A character vector or string scalar that starts with the letter 'j' to indicate that any jump in the

univariate function being plotted appears as a jump. The default is to fill in any jump by a
(near-)vertical line.

• A vector of the form [a,b], to indicate the interval over which to plot the univariate function in
f. If the function in f is m-variate, then this optional argument must be a cell array whose ith
entry specifies the interval over which the ith argument is to vary. In effect, for this arg, the
command fnplt(f,arg,...) has the same effect as the command
fnplt(fnbrk(f,arg),...). The default is the basic interval of f.

• An empty matrix, character vector, or string scalar, to indicate use of default(s). This option is
useful when your particular choice depends on some other variables.

points = fnplt(f,...) plots nothing and returns the two-dimensional points or three-
dimensional points it would have plotted instead.

[points, t] = fnplt(f,...) also returns, for a vector-valued f, the corresponding vector t of
parameter values.

Examples

Plot a Spline Using the fnplt Function

This simple example shows how to plot a spline using the fnplt function.

Create a vector of data sites.

x=linspace(0,2*pi,21);

Generate a spline with the data sites x previously created.

f = spapi(4,x,sin(x))

f = struct with fields:
 form: 'B-'
 knots: [0 0 0 0 0.6283 0.9425 1.2566 1.5708 1.8850 2.1991 2.5133 2.8274 3.1416 3.4558 3.7699 4.0841 4.3982 4.7124 5.0265 5.3407 5.6549 6.2832 6.2832 6.2832 6.2832]
 coefs: [1.3771e-17 0.2098 0.5226 0.8224 0.9668 1.0166 0.9668 0.8224 0.5975 0.3141 8.9245e-17 -0.3141 -0.5975 -0.8224 -0.9668 -1.0166 -0.9668 -0.8224 -0.5226 -0.2098 -2.4493e-16]
 number: 21
 order: 4
 dim: 1

Finally plot the spline using the fnplt function.

fnplt(f,'r',3,[1 3])

 fnplt

13-163

Input Arguments
f — Function to plot
scalar | vector | ND-array | spline structure

Function you want to plot, specified as a scalar, vector, ND-array, or a spline in either ppform, B-form
or stform.

symbol — Plotting symbol
character vector | string scalar

Symbol used to plot the function, specified as a character vector or string scalar.
Data Types: char | string

interv — Plotting interval
vector | cell array

Interval over which to plot the univariate function in f, specified as a vector. If the function in f is
m-variate, then this parameter must be a cell array whose i-th entry specifies the interval over which
the i-th argument is to vary.
Data Types: single | double

linewidth — Plotting line width
scalar

13 Functions

13-164

Width of the plotting line, specified as a scalar.
Data Types: single | double

jumps — Jump plotting specification
character vector | string scalar

Specify how to plot a jump in the univariate function, specified as a character vector or string scalar.
The default is to fill in any jump by a (near-)vertical line.
Data Types: char | string

Output Arguments
points — Plotting function points
vector | matrix

Two dimensional or three dimensional points of the function that would have been plotted, returned
as a vector or matrix.

t — Parameter values
vector | matrix

Corresponding parameter values of function f, returned as a vector or matrix.

Algorithms
The fnplt functions generates a vector x of evaluation points by the union of:

1 101 equally spaced sites filling out the plotting interval
2 Any breakpoints in the plotting interval.

Then fnplt evaluates the univariate function f described by f at these x evaluation points. If f is
real-valued, it plots the points (x,f(x)). If f is vector-valued, it plots the first two or three components
of f(x).

The bivariate function f described by f is evaluated on a 51-by-51 uniform grid if f is scalar-valued or
d-vector-valued with d > 2 and the result plotted by surf. In the contrary case, f is evaluated along
the meshlines of a 11-by-11 grid, and the resulting planar curves are plotted.

Version History
Introduced before R2006a

See Also
fnder | fnint | fnval

Topics
“Introducing Spline Fitting” on page 8-2

 fnplt

13-165

fnrfn
Refine partition of form

Syntax
g = fnrfn(f,addpts)

Description
g = fnrfn(f,addpts) describes the same function as does f, but uses more terms to do it. This is
of use when the sum of two or more functions of different forms is wanted or when the number of
degrees of freedom in the form is to be increased to make fine local changes possible. The precise
action depends on the form in f.

If the form in f is a B-form or BBform, then the entries of addpts are inserted into the existing knot
sequence, subject to the following restriction: The multiplicity of no knot exceed the order of the
spline. The equivalent B-form with this refined knot sequence for the function given by f is returned.

If the form in f is a ppform, then the entries of addpts are inserted into the existing break sequence,
subject to the following restriction: The break sequence be strictly increasing. The equivalent ppform
with this refined break sequence for the function in f is returned.

fnrfn does not work for functions in stform.

If the function in f is m-variate, then addpts must be a cell array, {addpts1,..., addptsm}, and
the refinement is carried out in each of the variables. If the ith entry in this cell array is empty, then
the knot or break sequence in the ith variable is unchanged.

Examples
Construct a spline in B-form, plot it, then apply two midpoint refinements, and also plot the control
polygon of the resulting refined spline, expecting it to be quite close to the spline itself:

k = 4; sp = spapi(k, [1,1:10,10], [cos(1),sin(1:10),cos(10)]);
 fnplt(sp), hold on
 sp3 = fnrfn(fnrfn(sp));
 plot(aveknt(fnbrk(sp3,'knots'),k), fnbrk(sp3,'coefs'), 'r')
 hold off

A third refinement would have made the two curves indistinguishable.

Use fnrfn to add two B-splines of the same order:

B1 = spmak([0:4],1); B2 = spmak([2:6],1);
 B1r = fnrfn(B1,fnbrk(B2,'knots'));
 B2r = fnrfn(B2,fnbrk(B1,'knots'));
 B1pB2 = spmak(fnbrk(B1r,'knots'),fnbrk(B1r,'c')+fnbrk(B2r,'c'));
 fnplt(B1,'r'),hold on, fnplt(B2,'b'), fnplt(B1pB2,'y',2)
 hold off

13 Functions

13-166

Algorithms
The standard knot insertion algorithm is used for the calculation of the B-form coefficients for the
refined knot sequence, while Horner's method is used for the calculation of the local polynomial
coefficients at the additional breaks in the refined break sequence.

See Also
fncmb | ppmak | spmak

 fnrfn

13-167

fntlr
Taylor coefficients

Syntax
taylor = fntlr(f,dorder,x)

Description
taylor = fntlr(f,dorder,x) returns the nonnormalized Taylor coefficients, up to the given
order dorder and at the given x, of the function described in f .

For a univariate function and a scalar x, this is the vector

T(f , dorder, x): = [f (x); Df (x); ...; Ddorder−1f (x)]

If, more generally, the function in f is d-valued with d>1 or even prod(d)>1 and/or is m-variate for
some m>1, then dorder is expected to be an m-vector of positive integers, x is expected to be a
matrix with m rows, and, in that case, the output is of size [prod(d)*prod(dorder),size(x,2)],
with its j-th column containing

T(f , dorder, x(: , j))(i1, ..., im) = D1i1− 1...Dmim− 1f (x(: , j))

for i1=1:dorder(1), ..., im=1:dorder(m). Here, Dif is the partial derivative of f with respect to its
ith argument.

Examples
If f contains a univariate function and x is a scalar or a 1-row matrix, then fntlr(f,3,x) produces
the same output as the statements

df = fnder(f); [fnval(f,x); fnval(df,x); fnval(fnder(df),x)];

As a more complicated example, look at the Taylor vectors of order 3 at 21 equally spaced points for
the rational spline whose graph is the unit circle:

ci = rsmak('circle'); in = fnbrk(ci,'interv');
t = linspace(in(1),in(2),21); t(end)=[];
v = fntlr(ci,3,t);

We plot ci along with the points v(1:2,:), to verify that these are, indeed, points on the unit circle.

fnplt(ci), hold on, plot(v(1,:),v(2,:),'o')

Next, to verify that v(3:4,j) is a vector tangent to the circle at the point v(1:2,j), we use the
MATLAB quiver command to add the corresponding arrows to our plot:

quiver(v(1,:),v(2,:),v(3,:),v(4,:))

Finally, what about v(5:6,:)? These are second derivatives, and we add the corresponding arrows
by the following quiver command, thus finishing “First and Second Derivative of a Rational Spline
Giving a Circle” on page 13-169.

13 Functions

13-168

quiver(v(1,:),v(2,:),v(5,:),v(6,:)), axis equal, hold off

First and Second Derivative of a Rational Spline Giving a Circle

Now, our curve being a circle, you might have expected the 2nd derivative arrows to point straight to
the center of that circle, and that would have been indeed the case if the function in ci had been
using arclength as its independent variable. Since the parameter used is not arclength, we use the
formula, given in “Example: B-form Spline Approximation to a Circle” on page 10-18, to compute the
curvature of the curve given by ci at these selected points. For ease of comparison, we switch over to
the variables used there and then simply use the commands from there.

dspt = v(3:4,:); ddspt = v(5:6,:);
kappa = abs(dspt(1,:).*ddspt(2,:)-dspt(2,:).*ddspt(1,:))./...
 (sum(dspt.^2)).^(3/2);
max(abs(kappa-1))
ans = 2.2204e-016

The numerical answer is reassuring: at all the points tested, the curvature is 1 to within roundoff.

See Also
fnder | fndir

 fntlr

13-169

fnval
Evaluate spline function

Syntax
v = fnval(f,x)
fnval(x,f)
fnval(...,'l')

Description
v = fnval(f,x) provides the value f(x) at the points in x of the spline function f whose description
is contained in f.

If f is scalar-valued and univariate, the output v is obtained by replacing each entry of x by the value
of f at that entry. This is the intent in all other cases, except that, for a d-valued m-variate function, d-
vectors replaces m-vectors.

For a univariate f :

• If f is scalar-valued, then v is of the same size as x.
• If f is [d1,...,dr]-valued, and x has size [n1,...,ns], then v has size [d1,...,dr,

n1,...,ns], with v(:,...,:, j1,...,js) the value of f at x(j1,...,js), – except that:

• n1 is ignored if it is 1 and s is 2, i.e., if x is a row vector;
• MATLAB ignores any trailing singleton dimensions of x.

For an m-variate f with m>1, with f [d1,...,dr]-valued, x might be either an array, or else a cell
array {x1,...,xm}.

• If x is an array, of size [n1,...,ns], then n1 must equal m, and v has size [d1,...,dr,
n2,...,ns], with v(:,...,:, j2,...,js) the value of f at x(:,j2,...,js), – except that:

• d1, ..., dr is ignored in case f is scalar-valued, i.e., both r and n1 are 1;
• MATLAB ignores any trailing singleton dimensions of x.

• If x is a cell array, then it must be of the form {x1,...,xm}, with xj a vector, of length nj, and,
in that case, v has size [d1,...,dr, n1,...,nm], with v(:,...,:, j1,...,jm) the value of
f at (x1(j1), ..., xm(jm)), – except that d1, ..., dr is ignored in case f is scalar-valued, i.e., both r
and n1 are 1.

If f has a jump discontinuity at x, then the value f(x +), i.e., the limit from the right, is returned,
except when x equals the right end of the basic interval of the form; for such x, the value f(x–), i.e.,
the limit from the left, is returned.

fnval(x,f) is the same as fnval(f,x).

fnval(...,'l') treats f as continuous from the left. This means that if f has a jump discontinuity at
x, then the value f(x–), i.e., the limit from the left, is returned, except when x equals the left end of
the basic interval; for such x, the value f(x +) is returned.

13 Functions

13-170

If the function is multivariate, then the above statements concerning continuity from the left and
right apply coordinate wise.

Examples

Evaluate Functions at Specified Points

This example shows how to interpolate some data and plot and evaluate the resulting functions.

Define some data.

x = [0.074 0.31 0.38 0.53 0.57 0.58 0.59 0.61 0.61 0.65 0.71 0.81 0.97];
y = [0.91 0.96 0.77 0.5 0.5 0.51 0.51 0.53 0.53 0.57 0.62 0.61 0.31];

Interpolate the data and plot the resulting function, f.

f = csapi(x, y)

f = struct with fields:
 form: 'pp'
 breaks: [0.0740 0.3100 0.3800 0.5300 0.5700 0.5800 0.5900 0.6100 0.6500 0.7100 0.8100 0.9700]
 coefs: [11x4 double]
 pieces: 11
 order: 4
 dim: 1

fnplt(f)

 fnval

13-171

Find the value of the function f at x = 0.5.

fnval(f, 0.5)

ans = 0.5294

Find the value of the function f at 0, 0.1, ..., 1.

fnval(f, 0:0.1:1)

ans = 1×11

 0.3652 1.0220 1.1579 0.9859 0.7192 0.5294 0.5171 0.6134 0.6172 0.4837 0.2156

Create a function f2 that represents a surface.

x = 0.0001+(-4:0.2:4);
y = -3:0.2:3;
[yy, xx] = meshgrid(y, x);
r = pi*sqrt(xx.^2+yy.^2);
z = sin(r)./r;
f2 = csapi({x,y}, z);

Plot the function f2.

fnplt(f2)
axis([-5, 5, -5, 5, -0.5, 1]);

13 Functions

13-172

Find the value of the function f2 at x = -2 and y = 3.

fnval(f2, [-2; 3])

ans = -0.0835

Input Arguments
f — Spline function
object

Spline function that you want to evaluate, specified as an object.

x — Evaluation points
vector | matrix | cell

Points at which you want to evaluate the spline function f, specified as a vector, matrix or cell array.

Output Arguments
v — Values at specified points
scalar | vector | matrix | cell

Value f(x) at the points in x of the spline function f, returned as a scalar, vector, matrix or cell array.

 fnval

13-173

Algorithms
For each entry of x, the function determines the relevant break-interval or knot-interval and
assembles the relevant information. Depending on whether f is in ppform or in B-form, nested
multiplication or the B-spline recurrence (see, e.g., [PGS; X.(3)]) are then used vector-fashion for the
simultaneous evaluation at all entries of x. Evaluation of a multivariate polynomial spline function
takes full advantage of the tensor product structure.

Evaluation of a rational spline follows up evaluation of the corresponding vector-valued spline by
division of all but its last component by its last component.

Evaluation of a function in stform makes essential use of stcol, and tries to keep the matrices
involved to reasonable size.

Version History
Introduced in R2006b

See Also
fnbrk | ppmak | rsmak | spmak | stmak

Topics
“Introducing Spline Fitting” on page 8-2
“The ppform” on page 10-8
“The B-form” on page 10-13

13 Functions

13-174

fnxtr
Extrapolate spline

Syntax
pp = fnxtr(f,order)
pp = fnxtr(f)

Description
pp = fnxtr(f,order) returns a spline of order order that extrapolates the spline f. pp equals f
on its basic interval, but pp is a polynomial of the given order outside that interval. pp satisfies at
least order smoothness conditions at the ends of the basic interval of f, that is, at the new breaks. It
is most useful to use a positive value of order that is smaller than the order of f.

pp = fnxtr(f) uses an extrapolation order equal to 2. It is equivalent to fnxtr(f,2).

Examples

Extrapolate Cubic Smoothing Spline

Create a cubic smoothing spline on the unit interval.

x = rand(1,21);
spline = csaps(x,x.^3);

Create an extrapolating spline of order 2.

order = 2;
extrSpline = fnxtr(spline,order);

Plot the original spline together with the extrapolating spline.

fnplt(spline,[-.5 1.4])
hold on
fnplt(extrSpline,[-.5 1.4])
legend('Cubic smoothing spline','Extrapolating spline')
hold off

 fnxtr

13-175

Extrapolate Bivariate B-Spline

Create and plot a bivariate B-spline.

spline = spmak({0:3,0:4},1);
fnplt(spline)

13 Functions

13-176

Create an extrapolating spline. To extrapolate in the first variable only, specify a negative integer as
the extrapolation order in the second variable.

order = [3,-1];
extrSpline = fnxtr(spline,order);
fnplt(extrSpline)

 fnxtr

13-177

Input Arguments
f — Spline to extrapolate
structure

Spline to extrapolate, specified as a structure. f must be a spline in B-form, BBform, or ppform.
Data Types: struct

order — Order of extrapolating spline
integer | vector of integers

Order of extrapolating spline, specified as an integer or a vector of integers.

If order is zero, then the extrapolating spline describes the same spline as fn2fm(f,'B-'), but is
in ppform and has a larger basic interval.

If order is at least as large as the order of f, then the extrapolating spline is the same spline as
gn2fm(f,'pp'), but uses two more pieces and has a larger basic interval.

If f is m-variate, then order can be a vector with m elements, where order(i) is the order used to
extrapolate in the i-th variable. To exclude the i-th variable from being used in the extrapolation,
specify order(i) as a negative integer.
Example: 1

13 Functions

13-178

Output Arguments
pp — Spline in ppform
spline structure

Spline in ppform, returned as a structure with these fields.

Form — Form of spline
pp

Form of the spline, returned as pp. pp indicates that the spline is given in piecewise polynomial form.

Breaks — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Pieces — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

Version History
Introduced in R2006a

See Also
ppmak | spmak | fn2fm

 fnxtr

13-179

fnzeros
Roots of spline

Syntax
x = fnzeros(spline)
x = fnzeros(spline,I)

Description
x = fnzeros(spline) finds the zeros of a scalar-valued univariate spline in its basic interval. A
spline zero is either a point or a closed interval over which the spline is zero.

x = fnzeros(spline,I) finds the zeros in the interval I.

Examples

Find Roots of Spline

Create and plot a piecewise linear spline.

spline = spmak(augknt(1:7,2),[1,0,1,-1,0,0,1]);
figure
fnplt(spline)

13 Functions

13-180

Find the roots of the spline. The spline has each of the three kinds of zeros: touch zero, cross zero,
and zero over an interval.

x = fnzeros(spline)

x = 2×3

 2.0000 3.5000 5.0000
 2.0000 3.5000 6.0000

Plot the roots of the spline using right-pointing triangles at the left endpoints and left-pointing
triangles at the right endpoints.

nz = size(x,2);
hold on
plot(x(1,:),zeros(1,nz),'r>',x(2,:),zeros(1,nz),'r<','MarkerSize',10)
hold off

 fnzeros

13-181

Find Local Extrema of Spline

Create a spline with many local extrema. Locate the local extrema of the spline by finding the roots of
its first derivative.

spline = spmak(1:31,rand(1,25)-0.5);
x = fnzeros(fnder(spline));

Plot the spline and its local extrema.

figure
fnplt(spline)
hold on
x = unique(x(:));
y = fnval(spline,x);
plot(x,y,'ro')
xlim([-Inf Inf])
hold off

13 Functions

13-182

Find Roots of Discontinuous Spline

Create and plot a discontinuous piecewise linear spline.

 spline = spmak([0 0 1 1 2 2],[-1 1 -1 1]);
 figure
 fnplt(spline);

 fnzeros

13-183

Find the roots of the spline. The roots include the jump through zero at x = 1.

x = fnzeros(spline)

x = 2×3

 0.5000 1.0000 1.5000
 0.5000 1.0000 1.5000

Input Arguments
spline — Spline
structure

Spline, specified as a structure. spline must represent a scalar-valued univariate spline.
Data Types: struct

I — Interval to find zeros in
numeric vector with two elements

Interval to find zeros in, specified as a numeric vector with two elements.

13 Functions

13-184

Output Arguments
x — Location of roots
matrix with two rows

Locations of roots of spline, returned as a matrix with two rows. The elements of the first row are the
left endpoints of the intervals and the elements of the second row are the right endpoints. Each
column contains the left and right endpoint of a single interval. The roots are in increasing order.

There are three different types of intervals:

• If the endpoints are different, then the spline is zero on the entire interval. In this case, the largest
possible interval is given, regardless of knots that may be in the interior of the interval.

• If the endpoints are the same and coincident with a knot, then the spline has a zero at that point.
The spline could cross zero, touch zero, or be discontinuous at this point.

• If the endpoints are the same and not coincident with a knot, then the spline has a zero crossing at
this point.

Algorithms
To find the roots of a spline, fnzeros first converts the spline to B-form. The function then performs
some preprocessing to handle discontinuities and then uses the algorithm of [1].

Version History
Introduced before R2006a

References
[1] Mørken, Knut, and Martin Reimers. "An unconditionally convergent method for computing zeros

of splines and polynomials." Mathematics of Computation 76, no. 258 (2007): 845-865.

See Also
fnmin | fnval

 fnzeros

13-185

formula
Formula of cfit, sfit, or fittype object

Syntax
formula(fun)

Description
formula(fun) returns the formula of the cfit, sfit, or fittype object fun as a character array.

Examples
f = fittype('weibull');
formula(f)
ans =
a*b*x^(b-1)*exp(-a*x^b)

g = fittype('cubicspline');
formula(g)
ans =
piecewise polynomial

Version History
Introduced in R2006b

See Also
fittype | coeffnames | numcoeffs | probnames | coeffvalues

13 Functions

13-186

franke
Franke's bivariate test function

Syntax
z = franke(x,y)

Description
z = franke(x,y) returns the value z(i) of Franke's function at the site (x(i),y(i)),
i=1:numel(x), with z of the same size as x and y (which must be of the same size).

Franke's function is the following weighted sum of four exponentials:

3
4e− (9x− 2)2 + (9y − 2)2 /4 + 3

4e− (9x + 1)2/49 + (9y + 1)/10

 + 1
2e− (9x− 7)2 + (9y − 3)2 /4− 1

5e− (9x− 4)2 + (9y − 7)2

Examples
The following commands provide a plot of Franke's function:

pts = (0:50)/50; [x,y] = ndgrid(pts,pts); z = franke(x,y);
surf(x,y,z), view(145,-2), set(gca,'Fontsize',16)

References

[1] Richard Franke. “A critical comparison of some methods for interpolation of scattered data.”
Naval Postgraduate School Tech.Rep. NPS-53-79-003, March 1979.

 franke

13-187

get
Get fit options structure property names and values

Syntax
get(options)
s = get(options)
value = get(options,field)

Description
get(options) displays all property names and values of the fit options structure options.

s = get(options) returns a copy of the fit options structure options as the structure s.

value = get(options,field) returns the value of the property field of the fit options structure
options. field can be a cell array of character vectors, in which case value is also a cell array.

Examples

Obtain Property Values of a fit options Structure Using get

Create a fitoptions structure and call the get function to obtain its property values.

options = fitoptions('fourier1');
methodOptions = get(options,'Method')
maxIterOptions = get(options,'MaxIter')
set(options,'Maxiter',1e3);
maxIterOptions = get(options,'MaxIter')

methodOptions =

 'NonlinearLeastSquares'

maxIterOptions =

 400

maxIterOptions =

 1000

Property values can also be referenced and assigned using the dot notation. For example:

options.MaxIter

ans =
 1000

options.MaxIter = 500;
options.MaxIter

13 Functions

13-188

ans =
 500

Input Arguments
options — fitoptions object
fitoptions (default)

fitoptions object of which you want to get the property names and values, specified as a
fitoptions object.

field — Property value
character vector (default)

Property value of the fitoptions object options that you want to get, specified as a character
vector, or a cell array of character vectors.
Data Types: single | double

Output Arguments
s — fitoptions object
fitoptions

Copy of the fitoptions object, returned as a fitoption object.

value — Property value
scalar | vector | matrix | cell

Property value of the fitoptions object s, returned as a scalar, a vector, a matrix, or a cell.

Version History
Introduced before R2006a

See Also
fitoptions | set

 get

13-189

getcurve
Interactive creation of cubic spline curve

Syntax
[xy,spcv] = getcurve

Description
[xy,spcv] = getcurve displays a gridded window and asks you for input. As you click on points in
the gridded window, the broken line connecting these points is displayed. To indicate that you are
done, click outside the gridded window. Then a cubic spline curve, spcv, through the point sequence,
xy, is computed (via cscvn) and drawn. The point sequence and, optionally, the spline curve are
output.

If you want a closed curve, place the last point close to the initial point.

If you would like the curve to have a corner at some point, click on that point twice (or more times) in
succession.

You can’t use getcurve over an existing figure, but you can use these functions to do the same thing:
MATLAB function ginput , and cscvn in Curve Fitting Toolbox.

Examples
Draw a Spline Over an Image

You can’t use getcurve over an existing figure, but you can use these functions to do the same thing.
The following example code allows you to click an existing image to draw a spline through the points.

Draw the default image.

image

The function ginput collects mouse click points until you press Enter.

[x, y] = ginput

Click on the axis to select points. Press Enter when you have finished selecting points.

Fit and plot a spline through the points using the cscvn function.

spcv = cscvn([x, y].')
hold on
fnplt(spcv)
hold off

See Also
cscvn

13 Functions

13-190

indepnames
Independent variable of cfit, sfit, or fittype object

Syntax
indep = indepnames(fun)

Description
indep = indepnames(fun) returns the independent variable name or names (indep) of the cfit,
sfit, or fittype object fun. For curves indep is a 1-by-1 cell array of character vectors, and for
surfaces indep is a 2-by-1 cell array of character vectors.

Examples
f1 = fittype('a*x^2+b*exp(n*x)');
indep1 = indepnames(f1)
indep1 =
 'x'

f2 = fittype('a*x^2+b*exp(n*x)','independent','n');
indep2 = indepnames(f2)
indep2 =
 'n'

Version History
Introduced in R2006b

See Also
dependnames | fittype | formula

 indepnames

13-191

integrate
Integrate cfit object

Syntax
int = integrate(fun,x,x0)

Description
int = integrate(fun,x,x0) integrates the cfit object fun at the points specified by the vector
x, starting from x0, and returns the result in int.

Examples

Find the Integral of a Fit Using the integrate Function

Create a baseline sinusoidal signal.

xdata = (0:.1:2*pi)';
y0 = sin(xdata);

Add response-dependent Gaussian noise to the signal.

noise = 2*y0.*randn(size(y0));
ydata = y0 + noise;

Fit the noisy data with a custom sinusoidal model.

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Find the integral of the fit at the predictors.

int = integrate(fit1,xdata,0);

Plot the data, the fit, and the integral.

subplot(2,1,1)
plot(fit1,xdata,ydata) % cfit plot method
subplot(2,1,2)
plot(xdata,int,'m') % double plot method
grid on
legend('integral')

13 Functions

13-192

You can also compute integrals and plot them directly with the cfit plot method:

figure
plot(fit1,xdata,ydata,{'fit','integral'})

 integrate

13-193

The plot method, however, does not return data on the integral.

Input Arguments
fun — cfit function
cfit

Function to integrate, specified as a cfit object.

x — Integration points
vector

Points at which to integrate the function, specified as a vector.

x0 — First point of integration
scalar

First point of integration, specified as a scalar.

Output Arguments
int — Integration results
vector

Result of the integration, returned as a vector of the same size of x.

13 Functions

13-194

Version History
Introduced before R2006a

See Also
fit | plot | differentiate

Topics
“Introducing Spline Fitting” on page 8-2

 integrate

13-195

islinear
Determine if cfit, sfit, or fittype object is linear

Syntax
flag = islinear(fun)

Description
flag = islinear(fun) returns a flag of 1 if the cfit, sfit, or fittype object fun represents
a linear model, and a flag of 0 if it does not.

Note islinear assumes that all custom models specified by the fittype function using the syntax
ftype = fittype('expr') are nonlinear models. To create a linear model with fittype that will
be recognized as linear by islinear (and, importantly, by the algorithms of fit), use the syntax
ftype = fittype({'expr1','expr2',...,'exprn'}).

Examples
f = fittype('a*x+b')
f =
 General model:
 f(a,b,x) = a*x+b

g = fittype({'x','1'})
g =
 Linear model:
 g(a,b,x) = a*x + b

h = fittype('poly1')
h =
 Linear model Poly1:
 h(p1,p2,x) = p1*x + p2

islinear(f)
ans =
 0
islinear(g)
ans =
 1
islinear(h)
ans =
 1

Version History
Introduced in R2006b

13 Functions

13-196

See Also
fittype

 islinear

13-197

knt2brk, knt2mlt
Convert knots to breaks and their multiplicities

Syntax
knt2brk(knots)
[breaks,mults] = knt2brk(knots)
m = knt2mlt(t)
[m,sortedt] = knt2mlt(t)

Description
The commands extract the distinct elements from a sequence, as well as their multiplicities in that
sequence, with multiplicity taken in two slightly different senses.

knt2brk(knots) returns the distinct elements in knots, and in increasing order, hence is the same
as unique(knots).

[breaks,mults] = knt2brk(knots) additionally provides, in mults, the multiplicity with which
each distinct element occurs in knots. Explicitly, breaks and mults are of the same length, and
knt2brk is complementary to brk2knt in that, for any knot sequence knots, the two commands
[xi,mlts] = knt2brk(knots); knots1 = brk2knt(xi,mlts); give knots1 equal to knots.

m = knt2mlt(t) returns a vector of the same length as t, with m(i) counting, in the vector
sort(t), the number of entries before its ith entry that are equal to that entry. This kind of
multiplicity vector is needed in spapi or spcol where such multiplicity is taken to specify which
particular derivatives are to be matched at the sites in t. Precisely, if t is nondecreasing and z is a
vector of the same length, then sp = spapi(knots, t, z) attempts to construct a spline s (with
knot sequence knots) for which Dm(i)s(t(i)) equals z(i), all i.

[m,sortedt] = knt2mlt(t) also returns the output from sort(t).

Neither knt2brk nor knt2mlt is likely to be used by the casual user of this toolbox.

Examples
[xi,mlts]=knt2brk([1 2 3 3 1 3]) returns [1 2 3] for xi and [2 1 3] for mlts.

[m,t]=knt2mlt([1 2 3 3 1 3]) returns [0 1 0 0 1 2] for m and [1 1 2 3 3 3] for t.

See Also
brk2knt | spapi | spcol

13 Functions

13-198

newknt
New break distribution

Syntax
newknots = newknt(f,newl)
newknt(f)
[...,distfn] = newknt(...)

Description
newknots = newknt(f,newl) returns the knot sequence whose interior knots cut the basic
interval of f into newl pieces, in such a way that a certain piecewise linear monotone function
related to the high derivative of f is equidistributed.

The intent is to choose a knot sequence suitable to the fine approximation of a function g whose
rough approximation in f is assumed to contain enough information about g to make this feasible.

newknt(f) uses for newl its default value, namely the number of polynomial pieces in f.

[...,distfn] = newknt(...) also returns, in distfn, the ppform of that piecewise linear
monotone function being equidistributed.

Examples
If the error in the least-squares approximation sp to some data x,y by a spline of order k seems
uneven, you might try for a more equitable distribution of knots by using

spap2(newknt(sp),k,x,y);

For another example, see “Solving a Nonlinear ODE with a Boundary Layer by Collocation” on page
12-145.

Algorithms
This is the Fortran routine NEWNOT in PGS. With k the order of the piecewise-polynomial function f in
pp, the function |Dkf| is approximated by a piecewise constant function obtained by local, discrete,
differentiation of the variation of Dk–1f. The new break sequence is chosen to subdivide the basic
interval of the piecewise-polynomial f in such a way that

∫newknots(i)
newknots(i + 1)

Dkf 1/k = const, i = k:k + newl− 1

 newknt

13-199

numargs
Number of input arguments of cfit, sfit, or fittype object

Syntax
nargs = numargs(fun)

Description
nargs = numargs(fun) returns the number of input arguments nargs of the cfit, sfit, or
fittype object fun.

Examples
f = fittype('a*x^2+b*exp(n*x)');
nargs = numargs(f)
nargs =
 4
args = argnames(f)
args =
 'a'
 'b'
 'n'
 'x'

Version History
Introduced in R2006b

See Also
fittype | formula | argnames

13 Functions

13-200

numcoeffs
Number of coefficients of cfit, sfit, or fittype object

Syntax
ncoeffs = numcoeffs(fun)

Description
ncoeffs = numcoeffs(fun) returns the number of coefficients ncoeffs of the cfit, sfit, or
fittype object fun.

Examples
f = fittype('a*x^2+b*exp(n*x)');
ncoeffs = numcoeffs(f)
ncoeffs =
 3
coeffs = coeffnames(f)
coeffs =
 'a'
 'b'
 'n'

Version History
Introduced in R2006b

See Also
fittype | formula | coeffnames

 numcoeffs

13-201

optknt
Knot distribution “optimal” for interpolation

Syntax
knots = optknt(tau,k,maxiter)
optknt(tau,k)

Description
knots = optknt(tau,k,maxiter) provides the knot sequence t that is best for interpolation
from Sk,t at the site sequence tau, with 10 the default for the optional input maxiter that bounds the
number of iterations to be used in this effort. Here, best or optimal is used in the sense of Micchelli/
Rivlin/Winograd and Gaffney/Powell, and this means the following: For any recovery scheme R that
provides an interpolant Rg that matches a given g at the sites tau(1), ..., tau(n), we may
determine the smallest constant constR for which ‖g – Rg‖ ≤ constR ‖Dk

g‖ for all smooth functions g.

Here, ‖f‖:=suptau(1) < x < tau(n)|f(x)|. Then we may look for the optimal recovery scheme as the scheme R
for which constR is as small as possible. Micchelli/Rivlin/Winograd have shown this to be interpolation
from Sk,t, with t uniquely determined by the following conditions:

1 t(1) = ... = t(k) = tau(1);
2 t(n+1) = ... = t(n+k) = tau(n);
3 Any absolutely constant function h with sign changes at the sites t(k+1), ..., t(n) and nowhere

else satisfies

∫tau(1)
tau(n)

f (x)h(x)dx = 0 for all f ∈ Sk, t

Gaffney/Powell called this interpolation scheme optimal since it provides the center function in the
band formed by all interpolants to the given data that, in addition, have their kth derivative between
M and –M (for large M).

optknt(tau,k) is the same as optknt(tau,k,10).

Examples
See the last part of the example “Spline Interpolation” for an illustration. For the following highly
nonuniform knot sequence

t = [0, .0012+[0, 1, 2+[0,.1], 4]*1e-5, .002, 1];

the command optknt(t,3) will fail, while the command optknt(t,3,20), using a high value for
the optional parameter maxiter, will succeed.

Algorithms
This is the Fortran routine SPLOPT in PGS. It is based on an algorithm described in [1], for the
construction of that sign function h mentioned above. It is essentially Newton's method for the

13 Functions

13-202

solution of the resulting nonlinear system of equations, with aveknt(tau,k) providing the first
guess for t(k+1), ...,t(n), and some damping used to maintain the Schoenberg-Whitney conditions.

References
[1] C. de Boor. "Computational aspects of optimal recovery." In Optimal Estimation in Approximation

Theory, C.A. Micchelli & T.J. Rivlin eds., Plenum Publ., New York, 1977, 69-91.

[2] P.W. Gaffney & M.J.D. Powell. "Optimal interpolation." In Numerical Analysis, G.A. Watson ed.,
Lecture Notes in Mathematics, No. 506, Springer-Verlag, 1976, 90-99.

[3] C.A. Micchelli, T.J. Rivlin & S. Winograd. "The optimal recovery of smooth functions." Numer.
Math. 80, (1974), 903-906.

See Also
aptknt | aveknt | newknt

 optknt

13-203

plot
Plot cfit or sfit object

Syntax
plot(sfit)
plot(sfit, [x, y], z)
H = plot(sfit, ..., Name,Value)
H = plot(sfit, ...)
plot(cfit)
plot(cfit,x,y)
plot(cfit,x,y,DataLineSpec)
plot(cfit,FitLineSpec,x,y,DataLineSpec)
plot(cfit,x,y,outliers)
plot(cfit,x,y,outliers,OutlierLineSpec)
plot(...,ptype,...)
plot(...,ptype,level)
H = plot(...)

Description

Note These syntaxes are available for surfaces, or sfit objects.

plot(sfit) plots the sfit object over the range of the current axes, if any, or otherwise over the
range stored in the fit.

plot(sfit, [x, y], z) plots z versus x and y and plots sfit over the range of x and y.

H = plot(sfit, ..., Name,Value) selects which way to plot the surface fit object sfit.

H = plot(sfit, ...) returns a vector of handles of the plotted objects.

Note These syntaxes are available for curves, or cfit objects.

plot(cfit) plots the cfit object over the domain of the current axes, if any. If there are no current
axes, and fun is an output from the fit function, the plot is over the domain of the fitted data.

plot(cfit,x,y) plots cfit together with the predictor data x and the response data y.

plot(cfit,x,y,DataLineSpec) plots the predictor and response data using the color, marker
symbol, and line style specified by the DataLineSpec formatting options.

plot(cfit,FitLineSpec,x,y,DataLineSpec) plots fun using the color, marker symbol, and line
style specified by the FitLineSpec formatting options, and plots x and y using the color, marker
symbol, and line style specified by the DataLineSpec formatting options.

plot(cfit,x,y,outliers) plots data indicated by outliers in a different color. outliers can
be an expression describing a logical vector, e.g., x > 10, a vector of integers indexing the points

13 Functions

13-204

you want to exclude, e.g., [1 10 25], or a logical array where true represents an outlier. You can
create the array with excludedata.

plot(cfit,x,y,outliers,OutlierLineSpec) plots outliers using the color, marker symbol,
and line style specified by the OutlierLineSpec.

plot(...,ptype,...) uses the plot type specified by ptype.

plot(...,ptype,level) plots prediction intervals with a confidence level specified by level.

Note This syntax is available for both curves and surfaces.

Plot types can be single or multiple, with multiple plot types specified as a cell array of character
vectors or a string array. With a single plot type, plot draws to the current axes and can be used
with commands like hold and subplot. With multiple plot types, plot creates subplots for each plot
type.

H = plot(...) returns a vector of handles to the plotted objects.

Examples

Plot data, outliers, and the results of the fits using the plot function

This example shows how to plot the data, the outliers, and the results of three fit objects with
different colors and line styles.

Create a baseline sinusoidal signal.

xdata = (0:0.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal with non-constant variance.

% Response-dependent Gaussian noise
gnoise = y0.*randn(size(y0));

% Salt-and-pepper noise
spnoise = zeros(size(y0));
p = randperm(length(y0));
sppoints = p(1:round(length(p)/5));
spnoise(sppoints) = 5*sign(y0(sppoints));

ydata = y0 + gnoise + spnoise;

Fit the noisy data with a baseline sinusoidal model.

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Identify “outliers” as points at a distance greater than 1.5 standard deviations from the baseline
model, and refit the data with the outliers excluded.

fdata = feval(fit1,xdata);
I = abs(fdata - ydata) > 1.5*std(ydata);

 plot

13-205

outliers = excludedata(xdata,ydata,'indices',I);

fit2 = fit(xdata,ydata,f,'StartPoint',[1 1],...
 'Exclude',outliers);

Compare the effect of excluding the outliers with the effect of giving them lower bisquare weight in a
robust fit.

fit3 = fit(xdata,ydata,f,'StartPoint',[1 1],'Robust','on');

Plot the data, the outliers, and the results of the fits.

plot(fit1,'r-',xdata,ydata,'k.',outliers,'m*')
hold on
plot(fit2,'c--')
plot(fit3,'b:')
xlim([0 2*pi])

Plot the residuals for the two fits considering outliers.

figure
plot(fit2,xdata,ydata,'co','residuals')
hold on
plot(fit3,xdata,ydata,'bx','residuals')
hold off

13 Functions

13-206

Load data and fit a Gaussian, excluding some data with an expression, then plot the fit, data and the
excluded points.

[x, y] = titanium;
f1 = fit(x',y','gauss2', 'Exclude', x<800);
plot(f1,x,y,x<800)

 plot

13-207

Input Arguments
sfit — Surface fit object
sfit

Fit object to plot, specified as an sfit object.

x — Data to plot
matrix

Data to plot, specified as a matrix with either one (curve fitting) or two (surface fitting) columns.

y — Data to plot
matrix

Data to plot, specified as a matrix with either one (curve fitting) or two (surface fitting) columns.

z — Data to plot
matrix

Data to plot, specified as a matrix with either one (curve fitting) or two (surface fitting) columns.

cfit — Curve fit object
cfit

13 Functions

13-208

Fit object to plot, specified as a cfit object.

outliers — Outlier data
expression | index vector | logical vector

• An expression describing a logical vector, e.g., x > 10.
• A vector of integers indexing the points you want to exclude, e.g., [1 10 25].
• A logical vector for all data points where true represents an outlier, created by excludedata.

For an example, see “Exclude Points from Fit” on page 13-89.
Data Types: logical | double

DataLineSpec — Line style, marker, and color for x and y
character vector | string scalar

Line style, marker, and color used to plot the predictor data x and response data y, specified as a
character vector or string scalar containing symbols. The symbols can appear in any order. You do not
need to specify all three characteristics (line style, marker, and color). For example, if you omit the
line style and specify the marker, then the plot shows only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y yellow

 plot

13-209

Color Description
m magenta
c cyan
r red
g green
b blue
w white
k black

FitLineSpec — Line style, marker, and color for the function
character vector | string scalar

Line style, marker, and color used to plot the cfit function, specified as a character vector or string
scalar containing symbols. The symbols can appear in any order. You do not need to specify all three
characteristics (line style, marker, and color). For example, if you omit the line style and specify the
marker, then the plot shows only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y yellow

13 Functions

13-210

Color Description
m magenta
c cyan
r red
g green
b blue
w white
k black

OutlierLineSpec — Line style, marker, and color for the outliers
character vector | string scalar

Line style, marker, and color used to plot the outliers, specified as a character vector or string scalar
containing symbols. The symbols can appear in any order. You do not need to specify all three
characteristics (line style, marker, and color). For example, if you omit the line style and specify the
marker, then the plot shows only the marker and no line.
Example: '--or' is a red dashed line with circle markers

Line Style Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Description
y yellow

 plot

13-211

Color Description
m magenta
c cyan
r red
g green
b blue
w white
k black

ptype — Plot type
'fit' | 'predfunc' | 'predobs' | 'residuals' | 'stresiduals' | 'deriv1' | 'deriv2' |
'integral'

Plot type, specified as one of these supported types:

• 'fit' — Data and fit (default)
• 'predfunc' — Data and fit with prediction bounds for the fit
• 'predobs' — Data and fit with prediction bounds for new observations
• 'residuals' — Residuals
• 'stresiduals' — Standardized residuals (residuals divided by their standard deviation)
• 'deriv1' — First derivative of the fit
• 'deriv2' — Second derivative of the fit
• 'integral' — Integral of the fit

level — Confidence level
0.95 (default) | positive scalar in the range (0,1)

Level of confidence of the prediction intervals, specified as a scalar between 0 and 1.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Exclude',[1 10 25],'Level',0.95

Exclude — Plot excluded data in different color
expression | index vector | logical vector | empty

Excluded data points to plot in a different color, specified as the comma-separated pair consisting of
'Exclude' and one of:

• An expression describing a logical vector, e.g., x > 10.
• A vector of integers indexing the points you want to exclude, e.g., [1 10 25].
• A logical vector for all data points where true represents an outlier, created by excludedata.

13 Functions

13-212

For an example, see “Exclude Points from Fit” on page 13-89.
Data Types: logical | double

Style — Option to plot the surface fit object sfit
'Surface' (default) | 'PredFunc' | 'PredObs' | 'Residuals' | 'Contour'

Way to plot the surface fit object sfit, specified as the comma-separated pair consisting of 'Style'
and one of:

• 'Surface' Plot the fit object as a surface (default)
• 'PredFunc' Surface with prediction bounds for function
• 'PredObs' Surface with prediction bounds for new observation
• 'Residuals' Plot the residuals (fit is the plane Z=0)
• 'Contour' Make a contour plot of the surface

Level — Confidence level
scalar

Confidence level used in the plot, specified as the comma-separated pair consisting of 'Level' and a
positive scalar less than 1. The default value is 0.95, for 95% confidence. This option only applies to
the 'PredFunc' and 'PredObs' plot styles.

XLim — x-axis limit
scalar | vector

Limits of the x-axis used for the plot, specified as the comma-separated pair consisting of 'XLim' and
a scalar or vector. By default the axes limits are taken from the data, XY. If no data is given, then the
limits are taken from the surface fit object, sfit.

YLim — y-axis limit
scalar | vector

Limits of the y-axis used for the plot, specified as the comma-separated pair consisting of 'YLim' and
a scalar or vector. By default the axes limits are taken from the data, XY. If no data is given, then the
limits are taken from the surface fit object, sfit.

Parent — Handle of axes
Axes object

Handle of the axes, specified as the comma-separated pair consisting of 'Parent' and a value.

Output Arguments
H — Vector of handles
object array

Vector of handles to the plotted objects, returned as an object array.

Version History
Introduced before R2006a

 plot

13-213

See Also
Apps
Curve Fitter

Functions
fit | excludedata | differentiate | integrate

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-214

ppmak
Put together spline in ppform

Syntax
ppmak(breaks,coefs)
ppmak
ppmak(breaks,coefs,d)
ppmak(breaks,coefs,sizec)

Description
The command ppmak(...) puts together a spline in ppform from minimal information, with the rest
inferred from that information. fnbrk provides any or all of the parts of the completed description. In
this way, the actual data structure used for the storage of the ppform is easily modified without any
effect on the various fn... commands that use this construct. However, the casual user is not likely
to use ppmak explicitly, relying instead on the various spline construction commands in the toolbox to
construct particular splines.

ppmak(breaks,coefs) returns the ppform of the spline specified by the break information in
breaks and the coefficient information in coefs. How that information is interpreted depends on
whether the function is univariate or multivariate, as indicated by breaks being a sequence or a cell
array.

If breaks is a sequence, it must be nondecreasing, with its first entry different from its last. Then the
function is assumed to be univariate, and the various parts of its ppform are determined as follows:

1 The number l of polynomial pieces is computed as length(breaks)-1, and the basic interval is,
correspondingly, the interval [breaks(1) .. breaks(l+1)].

2 The dimension d of the function's target is taken to be the number of rows in coefs. In other
words, each column of coefs is taken to be one coefficient. More explicitly, coefs(:,i*k+j) is
assumed to contain the jth coefficient of the (i+1)st polynomial piece (with the first coefficient
the highest and the kth coefficient the lowest, or constant, coefficient). Thus, with kl the number
of columns of coefs, the order k of the piecewise-polynomial is computed as fix(kl/l).

After that, the entries of coefs are reordered, by the command

 coefs = reshape(permute(reshape(coefs,[d,k,l]),[1 3 2]),[d*l,k])

in order to conform with the internal interpretation of the coefficient array in the ppform for a
univariate spline. This only applies when you use the syntax ppmak(breaks,coefs) where breaks
is a sequence (row vector), not when it is a cell-array. The permutation is not made when you use the
three-argument forms of ppmak. For the three-argument forms only a reshape is done, not a permute.

If breaks is a cell array, of length m, then the function is assumed to be m-variate (tensor product),
and the various parts of its ppform are determined from the input as follows:

1 The m-vector l has length(breaks{i})-1 as its ith entry and, correspondingly, the m-cell
array of its basic intervals has the interval [breaks{i}(1) .. breaks{i}(end)] as its ith
entry.

 ppmak

13-215

2 The dimension d of the function's target and the m-vector k of (coordinate-wise polynomial)
orders of its pieces are obtained directly from the size of coefs, as follows.

a If coefs is an m-dimensional array, then the function is taken to be scalar-valued, i.e., d is 1,
and the m-vector k is computed as size(coefs)./l. After that, coefs is reshaped by the
command coefs = reshape(coefs,[1,size(coefs)]).

b If coefs is an (r+m)-dimensional array, with sizec = size(c) say, then d is set to
sizec(1:r), and the vector k is computed as sizec(r+(1:m))./l. After that, coefs is
reshaped by the command coefs = reshape(coefs,[prod(d),sizec(r+(1:m))]).

Then, coefs is interpreted as an equivalent array of size
[d,l(1),k(1),l(2),k(2),...,l(m),k(m)], with its
(:,i(1),r(1),i(2),r(2),...,i(m),r(m))th entry the coefficient of

∏
μ = 1

m
x(μ)− breaks|μ](i(μ)) k(μ)− r(μ)

in the local polynomial representation of the function on the (hyper)rectangle with sides

[breaks μ] i(μ) .. breaks μ] i(μ) + 1], μ = 1:m

This is, in fact, the internal interpretation of the coefficient array in the ppform of a multivariate
spline.

ppmak prompts you for breaks and coefs.

ppmak(breaks,coefs,d) with d a positive integer, also puts together the ppform of a spline from
the information supplied, but expects the function to be univariate. In that case, coefs is taken to be
of size [d*l,k], with l obtained as length(breaks)-1, and this determines the order, k, of the
spline. With this, coefs(i*d+j,:) is taken to be the jth components of the coefficient vector for the
(i+1)st polynomial piece.

ppmak(breaks,coefs,sizec) with sizec a row vector of positive integers, also puts together the
ppform of a spline from the information supplied, but interprets coefs to be of size sizec (and
returns an error when prod(size(coefs)) differs from prod(sizec)). This option is important
only in the rare case that the input argument coefs is an array with one or more trailing singleton
dimensions. For, MATLAB suppresses trailing singleton dimensions, hence, without this explicit
specification of the intended size of coefs, ppmak would interpret coefs incorrectly.

Examples
The two splines

p1 = ppmak([1 3 4],[1 2 5 6;3 4 7 8]);
p2 = ppmak([1 3 4],[1 2;3 4;5 6;7 8],2);

have exactly the same ppform (2-vector-valued, of order 2). But the second command provides the
coefficients in the arrangement used internally.

ppmak([0:2],[1:6]) constructs a piecewise-polynomial function with basic interval [0..2] and
consisting of two pieces of order 3, with the sole interior break 1. The resulting function is scalar, i.e.,
the dimension d of its target is 1. The function happens to be continuous at that break since the first
piece is x|→x2 + 2x + 3, while the second piece is x|→4(x – 1)2 + 5(x–1) + 6.

13 Functions

13-216

When the function is univariate and the dimension d is not explicitly specified, then it is taken to be
the row number of coefs. The column number should be an integer multiple of the number l of
pieces specified by breaks. For example, the statement ppmak([0:2],[1:3;4:6]) leads to an
error, since the break sequence [0:2] indicates two polynomial pieces, hence an even number of
columns are expected in the coefficient matrix. The modified statement ppmak([0:1],[1:3;4:6])
specifies the parabolic curve x|→(1,4)x2 + (2,5)x + (3,6). In particular, the dimension d of its target is
2. The differently modified statement ppmak([0:2],[1:4;5:8]) also specifies a planar curve (i.e.,
d is 2), but this one is piecewise linear; its first polynomial piece is x|→(1,5)x + (2,6).

Explicit specification of the dimension d leads, in the univariate case, to a different interpretation of
the entries of coefs. Now the column number indicates the polynomial order of the pieces, and the
row number should equal d times the number of pieces. Thus, the statement ppmak([0:2],
[1:4;5:8],2) is in error, while the statement ppmak([0:2],[1:4;5:8],1) specifies a scalar
piecewise cubic whose first piece is x|→x3 + 2x2 + 3x + 4.

If you wanted to make up the constant polynomial, with basic interval [0..1] say, whose value is the
matrix eye(2), then you would have to use the full optional third argument, i.e., use the command

pp = ppmak(0:1,eye(2),[2,2,1,1]);

Finally, if you want to construct a 2-vector-valued bivariate polynomial on the rectangle [–1 .. 1] x [0 ..
1], linear in the first variable and constant in the second, say

 coefs = zeros(2,2,1); coefs(:,:,1) = [1 0; 0 1];

then the straightforward

 pp = ppmak({[-1 1],[0 1]},coefs);

will fail, producing a scalar-valued function of order 2 in each variable, as will

 pp = ppmak({[-1 1],[0 1]},coefs,size(coefs));

while the following command will succeed:

 pp = ppmak({[-1 1],[0 1]},coefs,[2 2 1]);

See the example “Intro to ppform” for other examples.

See Also
fnbrk

 ppmak

13-217

predint
Prediction intervals for cfit or sfit object

Syntax
ci = predint(fitresult,x)
ci = predint(fitresult,x,level)
ci = predint(fitresult,x,level,intopt,simopt)
[ci,y] = predint(...)

Description
ci = predint(fitresult,x) returns upper and lower 95% prediction bounds for response values
associated with the cfit object fitresult at the new predictor values specified by the vector x.
fitresult must be an output from the fit function to contain the necessary information for ci. ci
is an n-by-2 array where n = length(x). The left column of ci contains the lower bound for each
coefficient; the right column contains the upper bound.

ci = predint(fitresult,x,level) returns prediction bounds with a confidence level specified
by level. level must be between 0 and 1. The default value of level is 0.95.

ci = predint(fitresult,x,level,intopt,simopt) specifies the type of bounds to compute.

Observation bounds are wider than functional bounds because they measure the uncertainty of
predicting the fitted curve plus the random variation in the new observation. Non-simultaneous
bounds are for individual elements of x; simultaneous bounds are for all elements of x.

[ci,y] = predint(...) returns the response values y predicted by fitresult at the predictors
in x.

Note predint cannot compute prediction intervals for non-parametric regression methods such as
Interpolant, Lowess, and Spline.

Examples

Compute Prediction Intervals

Compute and plot observation and functional prediction intervals for a fit to noisy data.

Generate noisy data with an exponential trend.

x = (0:0.2:5)';
y = 2*exp(-0.2*x) + 0.5*randn(size(x));

Fit a curve to the data using a single-term exponential.

fitresult = fit(x,y,'exp1');

13 Functions

13-218

Compute 95% observation and functional prediction intervals, both simultaneous and
nonsimultaneous. Nonsimultaneous bounds are for individual elements of x; simultaneous bounds are
for all elements of x.

p11 = predint(fitresult,x,0.95,'observation','off');
p12 = predint(fitresult,x,0.95,'observation','on');
p21 = predint(fitresult,x,0.95,'functional','off');
p22 = predint(fitresult,x,0.95,'functional','on');

Plot the data, fit, and prediction intervals. Observation bounds are wider than functional bounds
because they measure the uncertainty of predicting the fitted curve plus the random variation in the
new observation.

subplot(2,2,1)
plot(fitresult,x,y), hold on, plot(x,p11,'m--'), xlim([0 5]), ylim([-1 5])
title('Nonsimultaneous Observation Bounds','FontSize',9)
legend off

subplot(2,2,2)
plot(fitresult,x,y), hold on, plot(x,p12,'m--'), xlim([0 5]), ylim([-1 5])
title('Simultaneous Observation Bounds','FontSize',9)
legend off

subplot(2,2,3)
plot(fitresult,x,y), hold on, plot(x,p21,'m--'), xlim([0 5]), ylim([-1 5])
title('Nonsimultaneous Functional Bounds','FontSize',9)
legend off

subplot(2,2,4)
plot(fitresult,x,y), hold on, plot(x,p22,'m--'), xlim([0 5]), ylim([-1 5])
title('Simultaneous Functional Bounds','FontSize',9)
legend({'Data','Fitted curve', 'Prediction intervals'},...
 'FontSize',8,'Location','northeast')

 predint

13-219

Input Arguments
fitresult — cfit or sfit function
cfit | sfit

Function of which you want to find the prediction intervals, specified as a cfit or sfit object.

fitresult must be an output from the fit function to contain the necessary information for ci.

x — Predictor values
vector

Predictor values used to compute the upper and lower prediction bounds of fitresult, specified as
a vector.

level — Confidence level
0.95 (default) | positive scalar in the range (0,1)

Confidence level of the prediction bounds, specified as a positive scalar between 0 and 1.

intopt — Type of bounds
'observation' (default) | 'functional'

Type of bounds, specified as either:

13 Functions

13-220

• 'observation' — Bounds for a new observation (default)
• 'functional' — Bounds for the fitted curve

simopt — Type of bounds
'off' (default) | 'on'

Type of bounds, specified as either:

• 'off' — Non-simultaneous bounds (default)
• 'on' — Simultaneous bounds

Output Arguments
ci — Prediction bounds
array

Upper and lower prediction bounds, returned as an array of size n-by-2, where n = length(x).

y — Response values
vector

Response values predicted by fitresult at the predictors in x, returned as a vector.

Version History
Introduced in R2013a

See Also
confint | fit | plot

Topics
“Introducing Spline Fitting” on page 8-2

 predint

13-221

prepareCurveData
Prepare data inputs for curve fitting

Syntax
[XOut,YOut] = prepareCurveData(XIn,YIn)
[XOut,YOut,WOut] = prepareCurveData(XIn,YIn,WIn)

Description
[XOut,YOut] = prepareCurveData(XIn,YIn) transforms data, if necessary, for curve fitting
with the fit function. The prepareCurveData function transforms data as follows:

• Return data as columns regardless of the input shapes. Error if the number of elements do not
match. Warn if the number of elements match, but the sizes differ.

• Convert complex to real (remove imaginary parts) and warn of this conversion.
• Remove NaN or Inf from data and warn of this removal.
• Convert nondouble to double and warn of this conversion.

Specify XIn as empty if you want to fit curves to y data against the index. If XIn is empty, then XOut
is a vector of indices into YOut. The fit function can use the vector XOut for the x data when there
is only y data.

[XOut,YOut,WOut] = prepareCurveData(XIn,YIn,WIn) transforms data including weights
(WIn) for curve fitting with the fit function.

When you generate code from the Curve Fitter app, the generated code includes a call to
prepareCurveData (or prepareSurfaceData for surface fits). You can call the generated file from
the command line with your original data or new data as input arguments, to recreate your fits and
plots. If you call the generated file with new data, the prepareCurveData function ensures you can
use any data that you can fit in the Curve Fitter app, by reshaping if necessary to column doubles and
removing NaNs, Infs, or the imaginary parts of complex numbers.

Examples

Reshape Rows to Columns for Curve Fitting

The following commands load the example titanium data in which x and y are row vectors.
Attempting to use rows as inputs to the fit function produces an error. The prepareCurveData
function reshapes x and y to columns for use with the fit function.

[x,y] = titanium();
[x,y] = prepareCurveData(x,y);

Create and plot a fit using the reshaped data.

f = fit(x,y,'smoothingspline');
plot(f,x,y)

13 Functions

13-222

Input Arguments
XIn — X data variable for curve fitting
vector | matrix

X data variable for curve fitting, specified as a scalar, a vector or a matrix. XIn can be empty. Specify
empty ([]) when you want to fit curves to y data against index (x=1:length(y)). See YOut.
Data Types: double

YIn — Y data variable for curve fitting
vector | matrix

Y data variable for curve fitting, specified as a scalar, a vector or a matrix.
Data Types: double

WIn — Weights for curve fitting
vector | matrix

Weights variable for curve fitting specified, as a scalar, a vector or a matrix.
Data Types: double

 prepareCurveData

13-223

Output Arguments
XOut — X data column variable for curve fitting
vector

X data column variable prepared for curve fitting, returned as a vector.

If XIn is empty, then XOut is a vector of indices into YOut. The fit function can use the vector XOut
for the x data when there is only y data.
Data Types: double

YOut — Y data column variable for curve fitting
vector

Y data column variable prepared for curve fitting, returned as a vector.
Data Types: double

WOut — Weights column variable for curve fitting
vector

Weights column variable prepared for curve fitting, returned as a vector.
Data Types: double

Version History
Introduced in R2013a

See Also
Functions
fit | prepareSurfaceData | excludedata

Apps
Curve Fitter

13 Functions

13-224

prepareSurfaceData
Prepare data inputs for surface fitting

Syntax
[XOut, YOut, ZOut] = prepareSurfaceData(XIn, YIn, ZIn)
[XOut, YOut, ZOut, WOut] = prepareSurfaceData(XIn, YIn, ZIn, WIn)

Description
[XOut, YOut, ZOut] = prepareSurfaceData(XIn, YIn, ZIn) transforms data, if necessary,
for surface fitting with the fit function. The function transforms data as follows:

• For grid vectors, transform row (YIn) and column (XIn) headers into arrays YOut and XOut that
are the same size as ZIn. Warn if XIn and YIn are reversed.

• Return data as columns regardless of the input shapes. Error if the number of elements do not
match. Warn if the number of elements match, but the sizes are different.

• Convert complex to real (remove imaginary parts) and warn of this conversion.
• Remove NaN or Inf from data and warn of this removal.
• Convert nondouble to double and warn of this conversion.

[XOut, YOut, ZOut, WOut] = prepareSurfaceData(XIn, YIn, ZIn, WIn) transforms data
including weights (WIn) for surface fitting with the fit function.

Use prepareSurfaceData if your data is not in column vector form. For example, you have 3
matrices. You can also use prepareSurfaceData if you have grid vectors, where length(XIn) =
n, length(YIn) = m and size(ZIn) = [m,n]. You must process grid vector data for use with
the fit function by using prepareSurfaceData. If you use the Curve Fitter app, you can select grid
vector data and it automatically converts the data for you.

If your data is in a MATLAB table, you do not need to use prepareSurfaceData. You can specify
variables in a MATLAB table as inputs to the fit function using the form tablename.varname.

When you generate code from the Curve Fitter app, the generated code includes a call to
prepareSurfaceData (or prepareCurveData for curve fits). You can call the generated file from
the command line with your original data or new data as input arguments, to recreate your fits and
plots. If you call the generated file with new data, the prepareCurveData function ensures you can
use any data that you can fit in the Curve Fitter app, by reshaping if necessary and removing NaNs,
Infs, or the imaginary parts of complex numbers.

Examples

Prepare surface data for the fit function

Create some data that is unsuitable for the fit function without preprocessing, because it is
nondouble, noncolumn, and contains some Nan and Inf values.

 prepareSurfaceData

13-225

x = int32(1:4);
y = int32(1:5);
z = rand(5,4);
z(13) = Inf;
z(3) = NaN;

Use the prepareSurfaceData to convert rows to columns, nondoubles to doubles, and remove Nan
and Inf.

[xo,yo,zo] = prepareSurfaceData(x,y,z);

The function displays the same warnings that you see if you select this data in the Curve Fitter app.
The warnings tell you how your data is processed to be suitable for the fit function.

Use whos to check that the prepareSurfaceData converted the variables to column vectors that
are doubles.

whos xo yo zo

Input Arguments
XIn — X data variable to prepare for surface fitting
vector | matrix

X data variable to prepare for surface fitting, specified as a scalar, a vector or a matrix.
Data Types: double

YIn — Y data variable to prepare for surface fitting
vector | matrix

Y data variable to prepare for surface fitting, specified as a scalar, a vector or a matrix.
Data Types: double

ZIn — Z data variable to prepare for surface fitting
vector | matrix

Z data variable to prepare for surface fitting, specified as a scalar, a vector or a matrix.
Data Types: double

WIn — Weights variable
scalar | vector | matrix

Weights variable to prepare for surface fitting, specified as a scalar, a vector or a matrix.
Data Types: double

Output Arguments
XOut — X data column variable prepared for surface fitting
vector

X data column variable prepared for surface fitting, returned as a vector.
Data Types: double

13 Functions

13-226

YOut — Y data column variable prepared for surface fitting
vector

Y data column variable prepared for surface fitting, returned as a vector.
Data Types: double

ZOut — Z data column variable prepared for surface fitting
vector

Z data column variable prepared for surface fitting, returned as a vector.
Data Types: double

WOut — Weights column variable
vector

Weights column variable prepared for surface fitting, returned as a vector.
Data Types: double

Version History
Introduced in R2010b

See Also
Functions
fit | prepareCurveData | excludedata

Apps
Curve Fitter

Topics
“Selecting Compatible Size Surface Data” on page 2-11

 prepareSurfaceData

13-227

probnames
Problem-dependent parameter names of cfit, sfit, or fittype object

Syntax
pnames = probnames(fun)

Description
pnames = probnames(fun) returns the names of the problem-dependent (fixed) parameters of the
cfit, sfit, or fittype object fun as a cell array of character vectors.

Examples
f = fittype('(x-a)^n + b','problem',{'a','b'});
coeffnames(f)
ans =
 'n'
probnames(f)
ans =
 'a'
 'b'

load census

c = fit(cdate,pop,f,'problem',{cdate(1),pop(1)},...
 'StartPoint',2);
coeffvalues(c)
ans =
 0.9877
probvalues(c)
ans =
 1.0e+003 *
 1.7900 0.0039

Version History
Introduced in R2006b

See Also
fittype | coeffnames | probvalues

13 Functions

13-228

probvalues
Problem-dependent parameter values of cfit or sfit object

Syntax
pvals = probvalues(fun)

Description
pvals = probvalues(fun) returns the values of the problem-dependent (fixed) parameters of the
cfit object fun as a row vector.

Examples
f = fittype('(x-a)^n + b','problem',{'a','b'});
coeffnames(f)
ans =
 'n'
probnames(f)
ans =
 'a'
 'b'

load census

c = fit(cdate,pop,f,'problem',{cdate(1),pop(1)},...
 'StartPoint',2);
coeffvalues(c)
ans =
 0.9877
probvalues(c)
ans =
 1.0e+003 *
 1.7900 0.0039

Version History
Introduced in R2006b

See Also
fit | fittype | probnames

 probvalues

13-229

quad2d
Numerically integrate sfit object

Syntax
Q = quad2d(FO, a, b, c, d)
[Q,ERRBND] = quad2d(...)
[Q,ERRBND] = QUAD2D(FO,a,b,c,d,PARAM1,VAL1,PARAM2,VAL2,...)

Description
Q = quad2d(FO, a, b, c, d) approximates the integral of the surface fit object FO over the
planar region a ≤ x ≤ b and c(x) ≤ y ≤ d(x). The bounds c and d can each be a scalar, a function
handle, or a curve fit (cfit) object.

[Q,ERRBND] = quad2d(...) also returns an approximate upper bound on the absolute error,
ERRBND.

[Q,ERRBND] = QUAD2D(FO,a,b,c,d,PARAM1,VAL1,PARAM2,VAL2,...) performs the
integration with specified values of optional parameters.

See the MATLAB function quad2d for details of the upper bound and the optional parameters.

Version History
Introduced in R2009b

See Also
quad2d | fit | sfit | cfit

13 Functions

13-230

rpmak
Put together rational spline

Syntax
rp = rpmak(breaks,coefs)
rp = rpmak(breaks,coefs,d)
rpmak(breaks,coefs,sizec)
rs = rsmak(knots,coefs)
rs = rsmak(shape,parameters)

Description
Both rpmak and rsmak put together a rational spline from minimal information. rsmak is also
equipped to provide rational splines that describe standard geometric shapes. A rational spline must
be scalar- or vector-valued.

rp = rpmak(breaks,coefs) has the same effect as the command ppmak(breaks, coefs)
except that the resulting ppform is tagged as a rational spline, i.e., as a rpform.

To describe what this means, let R be the piecewise-polynomial put together by the command
ppmak(breaks,coefs), and let r(x) = s(x)/w(x) be the rational spline put together by the command
rpmak(breaks,coefs). If v is the value of R at x, then v(1:end-1)/v(end) is the value of r at x.
In other words, R(x) = [s(x);w(x)]. Correspondingly, the dimension of the target of r is one less than
the dimension of the target of R. In particular, the dimension (of the target) of R must be at least 2,
i.e., the coefficients specified by coefs must be d-vectors with d > 1. See ppmak for how the input
arrays breaks and coefs are being interpreted, hence how they are to be specified in order to
produce a particular piecewise-polynomial.

rp = rpmak(breaks,coefs,d) has the same effect as ppmak(breaks,coefs,d+1), except that
the resulting ppform is tagged as being a rpform. Note that the desire to have that optional third
argument specify the dimension of the target requires different values for it in rpmak and ppmak for
the same coefficient array coefs.

rpmak(breaks,coefs,sizec) has the same effect as ppmak(breaks,coefs,sizec) except that
the resulting ppform is tagged as being a rpform, and the target dimension is taken to be
sizec(1)-1.

rs = rsmak(knots,coefs) is similarly related to spmak(knots,coefs), and
rsmak(knots,coefs,sizec) to spmak(knots,coefs,sizec). In particular,
rsmak(knots,coefs) puts together a rational spline in B-form, i.e., it provides a rBform. See
spmak for how the input arrays knots and coefs are being interpreted, hence how they are to be
specified in order to produce a particular piecewise-polynomial.

rs = rsmak(shape,parameters) provides a rational spline in rBform that describes the shape
being specified by the character vector or string scalar shape and the optional additional
parameters. Specific choices are:

rsmak('arc',radius,center,[alpha,beta])
rsmak('circle',radius,center)

 rpmak

13-231

rsmak('cone',radius,halfheight)
rsmak('cylinder',radius,height)
rsmak('southcap',radius,center)
rsmak('torus',radius,ratio)

with 1 the default value for radius, halfheight and height, and the origin the default for
center, and the arc running through all the angles from alpha to beta (default is [-pi/2,pi/2]),
and the cone, cylinder, and torus centered at the origin with their major circle in the (x,y)-plane, and
the minor circle of the torus having radius radius*ratio, the default for ratio being 1/3.

From these, one may generate related shapes by affine transformations, with the help of
fncmb(rs,transformation).

All fn... commands except fnint, fnder, fndir can handle rational splines.

Examples
The commands

runges = rsmak([-5 -5 -5 5 5 5],[1 1 1; 26 -24 26]);
rungep = rpmak([-5 5],[0 0 1; 1 -10 26],1);

both provide a description of the rational polynomial r(x) = 1/(x2 + 1) on the interval [-5 .. 5].
However, outside the interval [-5 .. 5], the function given by runges is zero, while the rational spline
given by rungep agrees with 1/(x2 + 1) for every x.

The figure of a rotated cone is generated by the commands

fnplt(fncmb(rsmak('cone',1,2),[0 0 -1;0 1 0;1 0 0]))
axis equal, axis off, shading interp

A Rotated Cone Given by a Rational Quadratic Spline

“A Helix” on page 13-233, showing a helix with several windings, is generated by the commands

13 Functions

13-232

arc = rsmak('arc',2,[1;-1],[0 7.3*pi]);
[knots,c] = fnbrk(arc,'k','c');
helix = rsmak(knots, [c(1:2,:);aveknt(knots,3).*c(3,:);
c(3,:)]);
fnplt(helix)

A Helix

For further illustrated examples, see “NURBS and Other Rational Splines” on page 10-23

See Also
rsmak | fnbrk | ppmak | spmak

 rpmak

13-233

rscvn
Piecewise biarc Hermite interpolation

Syntax
c = rscvn(p,u)
c = rscvn(p)

Description
c = rscvn(p,u) returns a planar piecewise biarc curve (in quadratic rBform) that passes, in order,
through the given points p(:,j) and is constructed in the following way (see “Construction of a
Biarc” on page 13-235). Between any two distinct points p(:,j) and p(:,j+1), the curve usually
consists of two circular arcs (including straight-line segments) which join with tangent continuity,
with the first arc starting at p(:,j) and normal there to u(:,j), and the second arc ending at
p(:,j+1) and normal there to u(:,j+1), and with the two arcs written as one whenever that is
possible. Thus the curve is tangent-continuous everywhere except, perhaps, at repeated points,
where the curve may have a corner, or when the angle, formed by the two segments ending at
p(:,j), is unusually small, in which case the curve may have a cusp at that point.

p must be a real matrix, with two rows, and at least two columns, and any column must be different
from at least one of its neighboring columns.

u must be a real matrix with two rows, with the same number of columns as p (for two exceptions,
see below), and can have no zero column.

c = rscvn(p) chooses the normals in the following way. For j=2:end-1, u(:,j) is the average of
the (normalized, right-turning) normals to the vectors p(:,j)-p(:,j-1) and p(:,j+1)-p(:,j). If
p(:,1)==p(:,end), then both end normals are chosen as the average of the normals to p(:,2)-
p(:,1) and p(:,end)-p(:,end-1) thus preventing a corner in the resulting closed curve.
Otherwise, the end normals are so chosen that there is only one arc over the first and last segment
(not-a-knot end condition).

rscvn(p,u), with u having exactly two columns, also chooses the interior normals as for the case
when u is absent but uses the two columns of u as the end-point normals.

Examples
Example 1. The following code generates a description of a circle, using just four pieces. Except for
a different scaling of the knot sequence, it is the same description as is supplied by
rsmak('circle',1,[1;1]).

p = [1 0 -1 0 1; 0 1 0 -1 0]; c = rscvn([p(1,:)+1;p(2,:)+1],p);

The same circle, but using just two pieces, is provided by

c2 = rscvn([0,2,0; 1,1,1]);

Example 2. The following code plots two letters. Note that the second letter is the result of
interpolation to just four points. Note also the use of translation in the plotting of the second letter.

13 Functions

13-234

p = [-1 .8 -1 1 -1 -1 -1; 3 1.75 .5 -1.25 -3 -3 3];
i = eye(2); u = i(:,[2 1 2 1 2 1 1]); B = rscvn(p,u);
S = rscvn([1 -1 1 -1; 2.5 2.5 -2.5 -2.5]);
fnplt(B), hold on, fnplt(fncmb(S,[3;0])), hold off
axis equal, axis off

Two Letters Composed of Circular Arcs

Example 3. The following code generates the “Construction of a Biarc” on page 13-235, of use in the
discussion below of the biarc construction used here. Note the use of fntlr to find the tangent to the
biarc at the beginning, at the point where the two arcs join, and at the end.

p = [0 1;0 0]; u = [.5 -.1;-.25 .5];
plot(p(1,:),p(2,:),'k'), hold on
biarc = rscvn(p,u); breaks = fnbrk(biarc,'b');
fnplt(biarc,breaks(1:2),'b',3), fnplt(biarc,breaks(2:3),'r',3)
vd = fntlr(biarc,2,breaks);
quiver(vd(1,:),vd(2,:),vd(4,:),-vd(3,:)), hold off

Construction of a Biarc

 rscvn

13-235

Algorithms
Given two distinct points, p1 and p2, in the plane and, correspondingly, two nonzero vectors, u1 and
u2, there is a one-parameter family of biarcs (i.e., a curve consisting of two arcs with common
tangent at their join) starting at p1 and normal there to u1 and ending at p2 and normal there to u2.
One way to parametrize this family of biarcs is by the normal direction, v, at the point q at which the
two arcs join. With a nonzero v chosen, there is then exactly one choice of q, hence the entire biarc is
then determined. In the construction used in rscvn, v is chosen as the reflection, across the
perpendicular to the segment from p1 to p2, of the average of the vectors u1 and u2, -- after both
vectors have been so normalized that their length is 1 and that they both point to the right of the
segment from p1 to p2. This choice for v seems natural in the two standard cases: (i) u2 is the
reflection of u1 across the perpendicular to the segment from p1 to p2; (ii) u1 and u2 are parallel.
This choice of v is validated by “Biarcs as a Function of the Left Normal” on page 13-236 which
shows the resulting biarcs when p1, p2, and u2 = [.809;.588]are kept fixed and only the normal
at p1 is allowed to vary.

Biarcs as a Function of the Left Normal

But it is impossible to have the interpolating biarc depend continuously at all four data, p1, p2, u1,
u2. There has to be a discontinuity as the normal directions, u1 and u2, pass through the direction
from p1 to p2. This is illustrated in “Biarcs as a Function of One Endpoint” on page 13-237 which
shows the biarcs when one point, p1 = [0;0], and the two normals, u1 = [1;1] and u2 =
[1;-1], are held fixed and only the other point, p2, moves, on a circle around p1.

13 Functions

13-236

Biarcs as a Function of One Endpoint

See Also
rsmak | cscvn

 rscvn

13-237

rsmak
Put together rational spline for standard geometric shapes

Syntax
rs = rsmak(shape,parameters)

Description
rs = rsmak(shape,parameters) provides a rational spline in rBform that describes the shape
being specified by the character vector or string scalar shape and the optional additional
parameters. Specific choices for shape are:

rsmak('arc',radius,center,[alpha,beta])
rsmak('circle',radius,center)
rsmak('cone',radius,halfheight)
rsmak('cylinder',radius,height)
rsmak('southcap',radius,center)
rsmak('torus',radius,ratio)

with 1 the default value for radius, halfheight and height, and the origin the default for
center, and the arc running through all the angles from alpha to beta (default is [-pi/2,pi/2]),
and the cone, cylinder, and torus centered at the origin with their major circle in the (x,y)-plane, and
the minor circle of the torus having radius radius*ratio, the default for ratio being 1/3.

From these, one may generate related shapes by affine transformations, with the help of
fncmb(rs,transformation).

See rpmak for more information on other options.

See Also
rpmak

13 Functions

13-238

set
Assign values in fit options structure

Syntax
set(options)
s = set(options)
set(options,field1,val1,field2,val2,...)
set(options,fields,vals)

Description
set(options) displays all property names of the fit options structure options. If a property has a
finite list of possible character vector values, these values are also displayed.

s = set(options) returns a structure s with the same property names as options. If a property
has a finite list of possible character vector values, the value of the property in s is a cell array
containing the possible character vector values. If a property does not have a finite list of possible
character vector values, the value of the property in s is an empty cell array.

set(options,field1,val1,field2,val2,...) sets the properties specified by the character
vectors field1, field2, ... to the values val1, val2, ..., respectively.

set(options,fields,vals) sets the properties specified by the cell array of character vectors
fields to the corresponding values in the cell array vals.

Examples

Set Property Values of a fitoptions Structure

Create a custom nonlinear model, and create a default fit options structure for the model:

f = fittype('a*x^2+b*exp(n*c*x)','problem','n');
options = fitoptions(f);

Set the Robust and Normalize properties of the fit options structure using property name/value
pairs:

set(options,'Robust','LAR','Normalize','On')

Set the Display, Lower, and Algorithm properties of the fit options structure using cell arrays of
property names/values:

set(options,{'Disp','Low','Alg'},...
 {'Final',[0 0 0],'Levenberg'})

Input Arguments
options — fitoptions object
fitoptions (default)

 set

13-239

fitoptions object of which you want to set the property names and values, specified as a
fitoptions object.

field1,val1,field2,val2,... — Property field
character vector (default) | scalar | vector | matrix

Property fields, specified as a character vector, of the fitoptions object options that you want to
set to the values val1, val2, ..., respectively, specified as a scalar, a vector, or a matrix.
Data Types: char

fields — Property fields
cell array of character vector (default)

Property field of the fitoptions object options that you want to set, specified as a cell array of
character vector.
Data Types: cell

vals — Property values
cell array (default)

Values of the fitoptions object options that you want to set the fields to, specified as a cell array.
Data Types: cell

Output Arguments
s — fitoptions structure
fitoptions

Copy of the fitoptions object options, returned as a fitoption object.

Version History
Introduced before R2006a

See Also
fitoptions | get

13 Functions

13-240

setoptions
Set model fit options

Syntax
FT = setoptions(FT, options)

Description
FT = setoptions(FT, options) sets the fit options of FT to options, where FT is a fittype,
cfit, or sfit object. The FT output argument must match the FT input argument.

Version History
Introduced in R2009b

See Also
fitoptions | fit | fittype

 setoptions

13-241

sfit
Constructor for sfit object

Syntax
surfacefit = sfit(fittype,coeff1,...,coeffn)

Description
surfacefit = sfit(fittype,coeff1,...,coeffn) constructs the sfit object surfacefit
using the model type specified by the fittype object and the coefficient values coeff1, coeff2,
etc.

An sfit object encapsulates the result of fitting a surface to data. They are normally constructed by
calling the fit function, or interactively by exporting a fit from the Curve Fitter app to the
workspace. You can get and set coefficient properties of the sfit object.

You can treat an sfit object as a function to make predictions or evaluate the surface at values of X
and Y.

Like the cfit class, sfit inherits all fittype methods.

Note sfit is called by the fit function when fitting fittype objects to data. To create an sfit
object that is the result of a regression, use fit.

You should call sfit directly only if you want to assign values to coefficients and problem parameters
of a fittype object without performing a fit.

Methods of sfit objects:

13 Functions

13-242

argnames Input argument names of cfit, sfit, or fittype object
category Category of fit of cfit, sfit, or fittype object
coeffnames Coefficient names of cfit, sfit, or fittype object
dependnames Dependent variable of cfit, sfit, or fittype object
formula Formula of cfit, sfit, or fittype object
indepnames Independent variable of cfit, sfit, or fittype object
islinear Determine if cfit, sfit, or fittype object is linear
numargs Number of input arguments of cfit, sfit, or fittype object
numcoeffs Number of coefficients of cfit, sfit, or fittype object
probnames Problem-dependent parameter names of cfit, sfit, or fittype object
probvalues Problem-dependent parameter values of cfit or sfit object
quad2d Numerically integrate sfit object
setoptions Set model fit options
sfit Constructor for sfit object
type Name of cfit, sfit, or fittype object

Examples

Make predictions or evaluate the surface values of X and Y

You can treat an sfit object as a function to make predictions or evaluate the surface at values of X
and Y.

 x = 3 - 6 * rand(49, 1);
 y = 3 - 6 * rand(49, 1);
 z = peaks(x, y);
 sf = fit([x, y], z, 'poly32');
 zhat = sf(mean(x), mean(y))

Input Arguments
fittype — Model type
fittype (default)

Model type the sfit function uses to construct the sfit object, specified as a fittype constructed
with the fittype function.
Example: fittype('linearinterp')

coeff1,...,coeffn — Coefficient values
scalar (default)

Coefficient values of the sfit object, specified as scalars.
Data Types: single | double

 sfit

13-243

Output Arguments
surfacefit — sfit object
sfit

Function output, returned as an sfit object.

Version History
Introduced in R2009a

See Also
Functions
fit | fittype | feval | cfit

Apps
Curve Fitter

Topics
“Evaluate a Surface Fit” on page 7-24
“Fit Postprocessing”

13 Functions

13-244

sftool
(Removed) Open Curve Fitting app

Note sftool has been removed. Use curveFitter instead. See Curve Fitter. For information on
updating your code, see “Compatibility Considerations”.

Syntax
sftool
sftool(x,y,z)
sftool(x,y,z,w)
sftool(filename)

Description
sftool opens the Curve Fitting app or brings focus to the tool if it is already open.

sftool(x,y,z) creates a fit to x and y inputs (or predictor data) and z output (or response data).
sftool opens the Curve Fitting app if necessary.

x, y, and z must be numeric, have two or more elements, and have compatible sizes. Sizes are
compatible if either:

• x, y, and z all have the same number of elements, or
• x and y are vectors, z is a 2D matrix, where length(x) = n, length(y) = m, and [m,n] =

size(z).

sftool(x,y,z,w) creates a fit with weights w. w must be numeric and have the same number of
elements as z.

sftool(filename) loads the surface fitting session in filename into the Curve Fitting app. The
filename should have the extension .sfit.

Infs, NaNs, and imaginary parts of complex numbers are ignored in the data.

The Curve Fitting app provides a flexible interface where you can interactively fit curves and surfaces
to data and view plots. You can:

• Create, plot, and compare multiple fits
• Use linear or nonlinear regression, interpolation, local smoothing regression, or custom equations
• View goodness-of-fit statistics, display confidence intervals and residuals, remove outliers and

assess fits with validation data
• Automatically generate code for fitting and plotting surfaces, or export fits to workspace for

further analysis

Version History
Introduced in R2009a

 sftool

13-245

R2022a: sftool has been removed
Errors starting in R2022a

sftool has been removed. Use curveFitter instead. For more information, see the Curve Fitter
app.

To update your code, change instances of sftool to curveFitter. You do not need to change the
input arguments. For example, use curveFitter(x,y,z) to fit a surface to the x, y, and z data.

See Also
Apps
Curve Fitter

Topics
“Interactive Curve and Surface Fitting” on page 2-2

13 Functions

13-246

smooth
Smooth response data

Syntax
yy = smooth(y)
yy = smooth(y,span)
yy = smooth(y,method)
yy = smooth(y,span,method)
yy = smooth(y,'sgolay',degree)
yy = smooth(y,span,'sgolay',degree)
yy = smooth(x,y, ___)
gpuarrayYY = smooth(gpuarrayY, ___)
gpuarrayYY = smooth(gpuarrayX,gpuarrayY, ___)

Description
yy = smooth(y) smooths the response data in column vector y using a moving average filter.

The first few elements of yy follow.

yy(1) = y(1)
yy(2) = (y(1) + y(2) + y(3))/3
yy(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5
yy(4) = (y(2) + y(3) + y(4) + y(5) + y(6))/5
...

Because of the way smooth handles endpoints, the result differs from the result returned by the
filter function.

yy = smooth(y,span) sets the span of the moving average to span.

yy = smooth(y,method) smooths the data in y using the method specified by method and the
default span.

yy = smooth(y,span,method) sets the span of method to span.

yy = smooth(y,'sgolay',degree) uses the Savitzky-Golay method with the polynomial degree
specified by degree.

yy = smooth(y,span,'sgolay',degree) uses the number of data points specified by span in
the Savitzky-Golay calculation. span must be odd and degree must be less than span.

yy = smooth(x,y, ___) specifies values for the independent variable x. You can use this syntax
with any of the arguments in the previous syntaxes.

gpuarrayYY = smooth(gpuarrayY, ___) performs the operation on a GPU using gpuArray data.
You can use gpuArray response data with all previous syntaxes. This syntax requires Parallel
Computing Toolbox™.

gpuarrayYY = smooth(gpuarrayX,gpuarrayY, ___) performs the operation on a GPU using
gpuArray input data. This syntax requires Parallel Computing Toolbox.

 smooth

13-247

Note Using gpuArray x and y inputs with the smooth function is only recommended if you use the
default method, 'moving'. Using GPU data with other methods does not offer any performance
advantage.

Examples

Smooth Data Using Moving Average Filter

Smooth data by linear index and by each column separately, using a moving average filter. Plot and
compare the results.

Load the data in count.dat. The 24-by-3 array count contains traffic counts at three intersections
for each hour of the day.

load count.dat

Suppose that the data are from a single intersection over three consecutive days. Smoothing all the
data together would then indicate the overall cycle of traffic flow through the intersection. Use a
moving average filter with a 5-hour span to smooth all the data simultaneously (by linear index).

c = smooth(count(:));
C1 = reshape(c,24,3);

However, the data are in fact from three different intersections. Thus, smoothing columnwise gives a
more meaningful picture of the traffic through each intersection in a day. Use the same moving
average filter to smooth each column of the data separately.

C2 = zeros(24,3);
for I = 1:3
 C2(:,I) = smooth(count(:,I));
end

Plot the original data and the data smoothed by linear index and by each column separately. Then,
plot the difference between the two smoothed data sets. The two methods give different results near
the endpoints.

subplot(3,1,1)
plot(count,':');
hold on
plot(C1,'-');
title('Smooth C1 (All Data)')

subplot(3,1,2)
plot(count,':');
hold on
plot(C2,'-');
title('Smooth C2 (Each Column)')

subplot(3,1,3)
plot(C2 - C1,'o-')
title('Difference C2 - C1')

13 Functions

13-248

Smooth Data Using loess and rloess

Plot and compare the results of data smoothed using the loess and rloess methods. Then
determine which method is less sensitive to outliers.

Create noisy data with two outliers.

x = (0:0.1:15)';
y = sin(x) + 0.5*(rand(size(x))-0.5);
y([90,110]) = 3;

Smooth the data with the loess and rloess methods. Use a span of 10% of the total number of data
points.

yy1 = smooth(x,y,0.1,'loess');
yy2 = smooth(x,y,0.1,'rloess');

Plot the original and smoothed data. The outliers have less influence with the robust method rloess.

subplot(2,1,1)
plot(x,y,'b.',x,yy1,'r-')
set(gca,'YLim',[-1.5 3.5])
legend('Original data','Smoothed data using ''loess''',...
 'Location','NW')

 smooth

13-249

subplot(2,1,2)
plot(x,y,'b.',x,yy2,'r-')
set(gca,'YLim',[-1.5 3.5])
legend('Original data','Smoothed data using ''rloess''',...
 'Location','NW')

Input Arguments
y — Data to smooth
column vector

Data to smooth, specified as a column vector.

If your data contains NaNs and you do not specify x, your data is treated as nonuniform and the
smoothing method 'lowess' is used.
Data Types: single | double

span — Number of data points for calculating the smoothed value
5 (default) | integer | scalar value in the range (0,1)

Number of data points for calculating the smoothed value, specified as an integer or as a scalar value
in the range (0,1) denoting a fraction of the total number of data points.

13 Functions

13-250

If you use the moving average or Savitzky-Golay methods, the number of data points for calculating
the smoothed value must be an odd integer. If you specify span as an even number or as a fraction
that results in an even number of data points, span is automatically reduced by 1.
Example: 7; 0.6

method — Smoothing method
'moving' (default) | 'lowess' | 'loess' | 'sgolay' | 'rlowess' | 'rloess'

Smoothing method to smooth the response data, specified as one of the following methods.

Method Description
'moving' (default) Moving average. A lowpass filter with filter coefficients equal to the

reciprocal of the span.
'lowess' Local regression using weighted linear least squares and a 1st degree

polynomial model.
'loess' Local regression using weighted linear least squares and a 2nd degree

polynomial model.
'sgolay' Savitzky-Golay filter. A generalized moving average with filter

coefficients determined by an unweighted linear least-squares regression
and a polynomial model of specified degree (default is 2). The method
can accept nonuniform predictor data.

'rlowess' A robust version of 'lowess' that assigns lower weight to outliers in the
regression. The method assigns zero weight to data outside six mean
absolute deviations.

'rloess' A robust version of 'loess' that assigns lower weight to outliers in the
regression. The method assigns zero weight to data outside six mean
absolute deviations.

Data Types: char | string

degree — Polynomial degree for Savitzky-Golay method
scalar value

Polynomial degree for the model used in the Savitzky-Golay method, specified as a scalar value.
degree must be less than span.
Example: 3

x — Independent variable for response data y
vector

Independent variable for the response data y, specified as a column vector. If you do not provide x,
methods that require x assume x = 1:length(y). Specify x data when y is not sorted or uniformly
spaced. If x is not uniform and you do not specify method, lowess is used. If you specify a smoothing
method that requires x to be sorted, the function automatically sorts the x data.
Data Types: single | double

gpuarrayY — Data to smooth
gpuArray vector

Data to smooth, specified as a gpuArray column vector.

 smooth

13-251

Data Types: single | double

gpuarrayX — Input data for response data gpuarrayY
gpuArray vector

Input data for the response data gpuarrayY, specified as a gpuArray column vector. If you do not
provide gpuarrayX, methods that require gpuarrayX assume gpuarrayX = 1:length(y).
Specify gpuarrayX data when the data are not uniformly spaced or sorted. If the gpuarrayX data is
not uniform and you do not specify the smoothing method, 'lowess' is used. If you specify a
smoothing method that requires gpuarrayX to be sorted, the function automatically sorts the
gpuarrayX data.
Data Types: single | double

Output Arguments
yy — Smoothed data
vector

Smoothed data, returned as a column vector.

gpuarrayYY — Smoothed data
gpuArray vector

Smoothed data, returned as a gpuArray column vector.

Tips
• You can generate a smooth fit to your data using a smoothing spline. For more information, see

fit.

Alternative Functionality
You can also smooth data by using the MATLAB smoothdata function. With the exception of GPU
array support, smoothdata includes all the functionality of the smooth function and has some
advantages. Unlike smooth, the smoothdata function supports:

• Matrices, tables, and timetables
• Moving median and Gaussian methods
• Option to specify how the NaN values are treated
• Option to substitute smoothed data for the original matrix or append smoothed data to the original

matrix
• Tall arrays, C/C++ code generation, and thread-based environments

Version History
Introduced before R2006a

13 Functions

13-252

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Using gpuArray x and y inputs with the smooth function is only recommended if you use the
default method, 'moving'. Using GPU data with other methods does not offer any performance
advantage.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
smoothdata | fit | sort

Topics
“Filtering and Smoothing Data” on page 6-34
“Smoothing Splines” on page 6-14
“Lowess Smoothing” on page 6-22
“Nonparametric Fitting” on page 6-2

 smooth

13-253

slvblk
Solve almost block-diagonal linear system

Syntax
x = slvblk(blokmat,b)
x = slvblk(blockmat,b,w)

Description
x = slvblk(blokmat,b) returns the solution (if any) of the linear system Ax = b, with the matrix
A stored in blokmat in the spline almost block-diagonal form. At present, only the command spcol
provides such a description, of the matrix whose typical entry is the value of some derivative
(including the 0th derivative, i.e., the value) of a B-spline at some site. If the linear system is
overdetermined (i.e., has more equations than unknowns but is of full rank), then the least-squares
solution is returned.

The right side b may contain several columns, and is expected to contain as many rows as there are
rows in the matrix described by blokmat.

x = slvblk(blockmat,b,w) returns the vector x that minimizes the weighted sum Σjw(j)((Ax – b)
(j))2.

Examples
sp=spmak(knots,slvblk(spcol(knots,k,x,1),y.')) provides in sp the B-form of the spline s
of order k with knot sequence knots that matches the given data (x,y), i.e., for which s(x) equals
y.

Algorithms
The command bkbrk is used to obtain the essential parts of the coefficient matrix described by
blokmat (in one of two available forms).

A QR factorization is made of each diagonal block, after it was augmented by the equations not dealt
with when factoring the preceding block. The resulting factorization is then used to solve the linear
system by back substitution.

See Also
bkbrk | spap2 | spapi | spcol

13 Functions

13-254

sorted
Locate sites with respect to mesh sites

Syntax
pointer = sorted(meshsites,sites)

Description
Various commands in this toolbox need to determine the index j for which a given x lies in the interval
[tj..tj + 1], with (ti) a given nondecreasing sequence, e.g., a knot sequence. This job is done by sorted
in the following fashion.

pointer = sorted(meshsites,sites) is the integer row vector whose j-th entry equals the
number of entries in meshsites that are ≤ ssites(j), with ssites the vector sort(sites).
Thus, if both meshsites and sites are nondecreasing, then

meshsites(pointer(j)) ≤ sites(j) < meshsites(pointer(j)+1)

with the obvious interpretations when

pointer(j) < 1 or length(meshsites) < pointer(j) + 1

Specifically, having pointer(j) < 1 then corresponds to having sites(j) strictly to the left of
meshsites(1), while having length(meshsites) < pointer(j)+1 then corresponds to having
sites(j) at, or to the right of, meshsites(end).

Examples
The statement

sorted([1 1 1 2 2 3 3 3],[0:4])

will generate the output 0 3 5 8 8, as will the statement

sorted([3 2 1 1 3 2 3 1],[2 3 0 4 1])

Algorithms
The indexing output from sort([meshsites(:).',sites(:).']) is used.

 sorted

13-255

spap2
Least-squares spline approximation

Syntax
spline = spap2(knots,k,x,y)
spap2(l,k,x,y)
spline = spap2(...,x,y,w)
spap2({knorl1,...,knorlm},k,{x1,...,xm},y)
spap2({knorl1,...,knorlm},k,{x1,...,xm},y,w)

Description
spline = spap2(knots,k,x,y) returns the B-form of the spline f of order k with the given knot
sequence knots for which

(*) y(:,j) = f(x(j)), all j

in the weighted mean-square sense, meaning that the sum

∑
j

w(j) y(: , j)− f x(j) 2

is minimized, with default weights equal to 1. The data values y(:,j) can be scalars, vectors,
matrices, or ND-arrays, and |z|2 is the sum of the squares of all the entries of z. Data points with the
same site are replaced by their average.

If the sites x satisfy the Schoenberg-Whitney conditions

 knots(j) < x(j) < knots(j + k)
(* *) j = 1, ..., length(x) = length(knots)− k

then there is a unique spline of the given order and knot sequence satisfying (*) exactly. No spline is
returned unless (**) is satisfied for some subsequence of x.

spap2(l,k,x,y) , with l a positive integer, returns the B-form of a least-squares spline
approximant, but with the knot sequence chosen for you. The knot sequence is obtained by applying
aptknt to an appropriate subsequence of x. The resulting piecewise-polynomial consists of l
polynomial pieces and has k-2 continuous derivatives. If you feel that a different distribution of the
interior knots might do a better job, follow this up with

sp1 = spap2(newknt(spline),k,x,y));

spline = spap2(...,x,y,w) lets you specify the weights w in the error measure (given above). w
must be a vector of the same size as x, with nonnegative entries. All the weights corresponding to
data points with the same site are summed when those data points are replaced by their average.

spap2({knorl1,...,knorlm},k,{x1,...,xm},y) provides a least-squares spline
approximation to gridded data. Here, each knorli is either a knot sequence or a positive integer.
Further, k must be an m-vector, and y must be an (r+m)-dimensional array, with y(:,i1,...,im) the
datum to be fitted at the site [x{1}(i1),...,x{m}(im)], all i1, ..., im. However, if the spline is

13 Functions

13-256

to be scalar-valued, then, in contrast to the univariate case, y is permitted to be an m-dimensional
array, in which case y(i1,...,im) is the datum to be fitted at the site [x{1}(i1),...,x{m}
(im)], all i1, ..., im.

spap2({knorl1,...,knorlm},k,{x1,...,xm},y,w) also lets you specify the weights. In this m-
variate case, w must be a cell array with m entries, with w{i} a nonnegative vector of the same size as
xi, or else w{i} must be empty, in which case the default weights are used in the ith variable.

Examples

Calculate the Least-Squares Approximation of a Cubic Spline

This example shows how to compute the least-squares approximation to the data x, y, by cubic
splines with two continuous derivatives, basic interval [a..b], and interior breaks xi, provided xi has
all its entries in (a..b) and the conditions (**) are satisfied.

sp = spap2(augknt([a,xi,b],4),4,x,y)

In that case, the approximation consists of length(xi)+1 polynomial pieces. If you only want to get
a cubic spline approximation consisting of l polynomial pieces, use instead

sp = spap2(l,4,x,y);

If the resulting approximation is not satisfactory, try using a larger l. Else use

sp = spap2(newknt(sp),4,x,y);

for a better distribution of the knot sequence. Repeat this process multiple times to increase the
fidelity of the distribution.

As another example, spap2(1,2,x,y); provides the least-squares straight-line fit to data x,y, while

w = ones(size(x));
w([1 end]) = 100;
spap2(1,2,x,y,w);

forces that fit to come very close to the first data point and to the last.

Compute and Plot the Least Square Approximation of a Bivariate Function

This example shows how to create a bivariate function, and compute and plot its least-square
approximation.

Generate the data for the approximation and the bivariate function.

x = -2:.2:2;
y=-1:.25:1;
[xx, yy] = ndgrid(x,y);
z = exp(-(xx.^2+yy.^2));

Compute the least-square approximation and plot it.

sp = spap2({augknt([-2:2],3),2},[3 4],{x,y},z);
fnplt(sp)

 spap2

13-257

Input Arguments
knots — Sequence of knots
vector | cell array

Knot sequence of the spline, specified as a nondecreasing vector.

k — Spline order
scalar

Order of the spline f, specified as a scalar.

l — Number of polynomial pieces
positive integer

Number of polynomial pieces of the resulting piecewise-polynomial, specified as a positive integer.

w — Error weights
nonnegative vector

Weights in the error measure, specified as a nonnegative vector of the same size as x.

x — Data sites
vector | cell array

13 Functions

13-258

Data sites of data values y to be fit, specified as a vector or as a cell array for multivariate data.
Spline f is created with knots at each data site x such that f(x(j)) = y(:,j) for all values of j.

For multivariate, gridded data, you can specify x as a cell array that specifies the data site in each
variable dimension: f(x1(i),x2(j),...xn(k)) = y(:,i,j,...,k).

y — Data values to fit
scalar | vector | matrix | array

Data values to fit during creation of the spline, specified as a vector, matrix, or array. Data values
y(:,j) can be scalars, matrices, or n-dimensional arrays. Data values given at the same data site x
are averaged.
Data Types: single | double

Output Arguments
spline — Spline structure
spline structure

Spline, returned as a structure with these fields.

Form — Form of spline
B-

Form of the spline, returned as B-. B- indicates it is given in B-form.

Knots — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Number — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

 spap2

13-259

Algorithms
spcol is called on to provide the almost block-diagonal collocation matrix (Bj,k(xi)), and slvblk
solves the linear system (*) in the (weighted) least-squares sense, using a block QR factorization.

Gridded data are fitted, in tensor-product fashion, one variable at a time, taking advantage of the fact
that a univariate weighted least-squares fit depends linearly on the values being fitted.

Version History
Introduced before R2006a

See Also
slvblk | spapi | spcol

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-260

spapi
Spline interpolation

Syntax
spline = spapi(knots,x,y)
spapi(k,x,y)
spapi({knork1,...,knorkm},{x1,...,xm},y)
spapi(...,'noderiv')

Description
spline = spapi(knots,x,y) returns the spline f (if any) of order

k = length(knots) - length(x)

with knot sequence knots for which

(*) f(x(j)) = y(:,j), all j.

If some of the entries of x are the same, then:

Dm(j)f (x(j)) = y(: , j)

with m(j) = i < j:x(i) = x(j) and Dmf the m-th derivative of f. In this case, the r-fold repetition of a
site z in x corresponds to the prescribing of value and the first r – 1 derivatives of f at z. To match the
average of all data values with the same data instead, call spapi with an additional fourth argument.

The data values, y(:,j), can be scalars, vectors, matrices, or ND-arrays.

spapi(k,x,y) , with k a positive integer, specifies the desired spline order, k. In this case the spapi
function calls the aptknt function to determine a workable, but not necessarily optimal, knot
sequence for the given sites x. In other words, the command spapi(k,x,y) has the same effect as
the more explicit command spapi(aptknt(x,k),x,y).

spapi({knork1,...,knorkm},{x1,...,xm},y) returns the B-form of a tensor-product spline
interpolant to gridded data. Here, each knorki is either a knot sequence, or a positive integer
specifying the polynomial order used in the i-th variable. The spapi function then provides a
corresponding knot sequence for the i-th variable. Further, y must be an (r+m)-dimensional array,
with y(:,i1,...,im) the datum to fit at the site [x{1}(i1),...,x{m}(im)], for all i1, ..., im. In
contrast to the univariate case, if the spline is scalar-valued, then y can be an m-dimensional array.

spapi(...,'noderiv') with the character vector or string scalar 'noderiv' as a fourth
argument, has the same effect as spapi(...) except that data values sharing the same site are
interpreted differently. With the fourth argument present, the average of the data values with the
same data site is interpolated at such a site. Without it, data values with the same data site are
interpreted as values of successive derivatives to be matched at such a site, as described above, in
the first paragraph of this Description.

Examples

 spapi

13-261

Bivariate Spline Interpolant and Osculatory Interpolation to Gridded Data

The function spapi([0 0 0 0 1 2 2 2 2],[0 1 1 1 2],[2 0 1 2 -1]) produces the unique
cubic spline f on the interval [0...2] with exactly one interior knot, at 1, that satisfies the five
conditions

f 0 + = 2, f 1 = 0, Df 1 = 1, D2f 1 = 2, f 2− = − 1 .

These include 3-fold matching at 1, i.e., matching there to prescribed values of the function and its
first two derivatives.

Here is an example of osculatory interpolation, to values y and slopes s at the sites x by a quintic
spline:

sp = spapi(augknt(x,6,2),[x,x,min(x),max(x)],[y,s,ddy0,ddy1]);

with ddy0 and ddy1 values for the second derivative at the endpoints.

As a related example, if you want to interpolate the sin(x) function at the distinct data sites by a
cubic spline, and to match its slope at a subsequence x(s), then call the spapi function with these
arguments:

sp = spapi(4,[x x(s)], [sin(x) cos(x(s))]).

The aptknt function will provide a suitable knot sequence. If you want to interpolate the same data by
quintic splines, then simply change the value 4 to 6.

As a bivariate example, here is a bivariate interpolant.

x = -2:.5:2; y = -1:.25:1; [xx, yy] = ndgrid(x,y);
z = exp(-(xx.^2+yy.^2));
sp = spapi({3,4},{x,y},z); fnplt(sp)

13 Functions

13-262

As an illustration of osculatory interpolation to gridded data, here is complete bicubic interpolation,
with the data explicitly derived from the bicubic polynomial g u, v = u3v3. This is helpful to see
exactly where the slopes, and slopes of slopes (the cross derivatives), must be placed in the data
values supplied. Since g is a bicubic polynomial, its interpolant, f, must be g itself. Test this:

sites = {[0,1],[0,2]}; coefs = zeros(4,4); coefs(1,1) = 1;
g = ppmak(sites,coefs);
Dxg = fnval(fnder(g,[1,0]),sites);
Dyg = fnval(fnder(g,[0,1]),sites);
Dxyg = fnval(fnder(g,[1,1]),sites);
f = spapi({4,4}, {sites{1}([1,2,1,2]),sites{2}([1,2,1,2])}, ...
 [fnval(g,sites), Dyg ; ...
 Dxg.' , Dxyg]);
if any(squeeze(fnbrk(fn2fm(f,'pp'), 'c')) - coefs)
'something went wrong', end

Input Arguments
knots — Sequence of knots
vector | cell array

Knot sequence of the spline, specified as a nondecreasing vector.

k — Evaluation points
vector | matrix | cell

 spapi

13-263

Points at which you want to evaluate the spline function f, specified as a vector, matrix or cell array.

x — Data sites
vector | cell array

Data sites of data values y to be fit, specified as a vector or as a cell array for multivariate data.
Spline f is created with knots at each data site x such that f(x(j)) = y(:,j) for all values of j.

For multivariate, gridded data, you can specify x as a cell array that specifies the data site in each
variable dimension: f(x1(i),x2(j),...xn(k)) = y(:,i,j,...,k).

y — Data values to fit
vector | matrix | array

Data values to fit during creation of the spline, specified as a vector, matrix, or array. Data values
y(:,j) can be scalars, matrices, or n-dimensional arrays. Data values given at the same data site x
are averaged.
Data Types: single | double

Output Arguments
spline — Spline structure
spline structure

Spline, returned as a structure with these fields.

Form — Form of spline
pp | B-

Form of the spline, returned as pp or B-. pp indicates that the spline is given in piecewise polynomial
form, B- indicates it is given in B-form.

Knots — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Number — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

13 Functions

13-264

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

Limitations
The given (univariate) knots and sites must satisfy the Schoenberg-Whitney conditions for the
interpolant to be defined. If the site sequence x is nondecreasing, then

knots(j) < x(j) < knots(j + k), all j

with equality possible at knots(1) and knots(end)). In the multivariate case, these conditions must
hold in each variable separately.

Algorithms
The function calls spcol to provide the almost-block-diagonal collocation matrix (Bj,k(x)) (with
repeats in x denoting derivatives, as described above), and slvblk solves the linear system (*), using
a block QR factorization.

The function fits gridded data, in tensor-product fashion, one variable at a time, taking advantage of
the fact that a univariate spline fit depends linearly on the values that are being fitted.

Version History
Introduced in R2006b

See Also
csapi | spap2 | spaps | spline

Topics
“Introducing Spline Fitting” on page 8-2
“The B-form” on page 10-13
“The ppform” on page 10-8

 spapi

13-265

spaps
Smoothing spline

Syntax
sp = spaps(x,y,tol)
[sp,values] = spaps(x,y,tol)
[sp,values,rho] = spaps(x,y,tol)
[...] = spaps(x,y,tol,w,m)
[...] = spaps({x1,...,xr},y,tol,...)

Description

Note For a simpler but less flexible method to generate smoothing splines, try the Curve Fitter app
or the fit function.

sp = spaps(x,y,tol) returns the B-form of the smoothest function f that lies within the given
tolerance tol of the given data points (x(j), y(:,j)), j=1:length(x). The data values
y(:,j) are scalars, vectors, matrices, or even ND-arrays. Data points with the same data site are
replaced by their weighted average, with its weight the sum of the corresponding weights, and the
tolerance tol is reduced accordingly.

[sp,values] = spaps(x,y,tol) also returns the smoothed values. values is the same as
fnval(sp,x).

Here, the distance of the function f from the given data is measured by

E(f) = ∑
j = 1

n
w(j) (y(: , j)− f (x(j))) 2

with the default choice for the weights w making E(f) the composite trapezoidal rule approximation to

∫min(x)
max(x)

y − f 2, and |z|2 denoting the sum of squares of the entries of z.

Further, smoothest means that the following roughness measure is minimized:

F(Dmf) = ∫
min(x)

max(x)
λ(t) Dmf (t) 2dt

where Dmf denotes the mth derivative of f. The default value for m is 2, the default value for the
roughness measure weight λ is the constant 1, and this makes f a cubic smoothing spline.

When tol is nonnegative, then the spline f is determined as the unique minimizer of the expression
ρE(f) + F(Dmf), with the smoothing parameter ρ (optionally returned) so chosen that E(f) equals tol.
Hence, when m is 2, then, after conversion to ppform, the result should be the same (up to round-off)
as obtained by csaps(x,y,ρ/(ρ + 1)). Further, when tol is zero, then the “natural” or variational spline

13 Functions

13-266

interpolant of order 2m is returned. For large enough tol, the least-squares approximation to the
data by polynomials of degree <m is returned.

When tol is negative, then ρ is -tol.

The default value for the weight function λ in the roughness measure is the constant function 1. But
you can choose it to be, more generally, a piecewise constant function, with breaks only at the data
sites. Assuming the vector x to be strictly increasing, you specify such a piecewise constant λ by
inputting tol as a vector of the same size as x. In that case, tol(i) is taken as the constant value of
λ on the interval (x(i-1) .. x(i)), i=2:length(x), while tol(1) continues to be used as the
specified tolerance.

[sp,values,rho] = spaps(x,y,tol) also returns the actual value of ρ used as the third output
argument.

[...] = spaps(x,y,tol,w,m) lets you specify the weight vector w and/or the integer m, by
supplying them as an argi. For this, w must be a nonnegative vector of the same size as x; m must be
1 (for a piecewise linear smoothing spline), or 2 (for the default cubic smoothing spline), or 3 (for a
quintic smoothing spline).

If the resulting smoothing spline, sp, is to be evaluated outside its basic interval, it should be
replaced by fnxtr(sp,m) to ensure that its m-th derivative is zero outside that interval.

[...] = spaps({x1,...,xr},y,tol,...) returns the B-form of an r-variate tensor-product
smoothing spline that is roughly within the specified tolerance to the given gridded data. For
scattered data, use tpaps. Now y is expected to supply the corresponding gridded values, with
size(y) equal to [length(x1),...,length(xr)] in case the function is scalar-valued, and equal
to [d,length(x1),...,length(xr)] in case the function is d-valued. Further, tol must be a cell
array with r entries, with tol{i} the tolerance used during the i-th step when a univariate (but
vector-valued) smoothing spline in the i-th variable is being constructed. The optional input for m
must be an r-vector (with entries from the set {1,2,3}), and the optional input for w must be a cell
array of length r, with w{i} either empty (to indicate that the default choice is wanted) or else a
positive vector of the same length as xi.

Examples

Compare Two Cubic Smoothing Splines Obtained from Noisy Data

This code returns a fit to the noisy data that is expected to be quite close to the underlying noisefree
data since the latter come from a slowly varying function and since the used TOL is of the size
appropriate for the size of the noise.

x = linspace(0,2*pi,21); y = sin(x) + (rand(1,21)-.5)*.2;
sp = spaps(x,y, (.05)^2*(x(end)-x(1)));
fnplt(sp)

 spaps

13-267

This code uses the same data and tolerance as before, but chooses the roughness weight to be only
0.1 in the right half of the interval and gives, correspondingly, a rougher but better fit there.

sp1 = spaps(x,y, [(.025)^2*(x(end)-x(1)),ones(1,10),repmat(.1,1,10)]);
fnplt(sp1)

13 Functions

13-268

Finally, compare the two cubic smoothing splines obtained previously.

fnplt(sp);
hold on
fnplt(sp1,'r')
plot(x,y,'ok')
hold off
title('Two cubic smoothing splines')
xlabel('The red one has reduced smoothness requirement in right half.')

 spaps

13-269

Smooth Approximant to Noisy Data of a Bivariate Function

This example produces a smooth approximant to noisy data from a smooth bivariate function. Note
the use of ndgrid here; use of meshgrid would produce an error.

x = -2:.2:2; y=-1:.25:1;
[xx,yy] = ndgrid(x,y);
rng(39);
z = exp(-(xx.^2+yy.^2)) + (rand(size(xx))-.5)/30;
sp = spaps({x,y},z,8/(60^2));
fnplt(sp)
axis off

13 Functions

13-270

Input Arguments
x — Data sites
vector | cell array

Data sites of data values y to be fit, specified as a vector or as a cell array for multivariate data.
Spline f is created with knots at each data site x such that f(x(j)) = y(:,j) for all values of j.

For multivariate, gridded data, you can specify x as a cell array that specifies the data site in each
variable dimension: f(x1(i),x2(j),...xn(k)) = y(:,i,j,...,k).
Data Types: single | double

y — Data values to fit
vector | matrix | array

Data values to fit during creation of the spline, specified as a vector, matrix, or array. Data values
y(:,j) can be scalars, matrices, or n-dimensional arrays. Data values given at the same data site x
are averaged.
Data Types: single | double

tol — Tolerance
scalar

Tolerance of the given data points, specified as a scalar.

 spaps

13-271

Data Types: single | double

w — Data weights
vector | cell array

Weights w of the data points, specified as a vector of nonnegative entries of the same size as x.

m — Derivative order
scalar

Derivative order, specified as a scalar. This value must be either 1 for a piecewise linear smoothing
spline, 2 for the default cubic smoothing spline, or 3 for a quintic smoothing spline.
Data Types: single | double

Output Arguments
sp — Spline in B-form
spline structure

Spline in B-form, returned as a structure with these fields.

Form — Form of spline
B-

Form of the spline, returned as B-. B- indicates that the spline is given in B-form.

Knots — Knot locations of spline
vector | cell array

Knot positions of the spline, returned as a vector or as a cell array of vectors for multivariate data.
Vectors contain strictly increasing elements that represent the start and end of each of the intervals
over which the polynomial pieces are defined.

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Number — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Order — Order of polynomials
scalar | vector

Order of the polynomial function describing each polynomial piece of the spline, returned as a scalar
or as a vector containing the order in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

13 Functions

13-272

values — Evaluated spline
vector | matrix | array

Values of the spline at the points in x, returned as a vector or as a matrix or array for multivariate
data.

rho — Smoothing parameter
scalar | cell array

Smoothing parameter used to calculate the spline, returned as a scalar or as a cell array of scalar
values for multivariate data.

Algorithms
This function uses the Reinsch's approach [1] , including his way of choosing the equation for the
optimal smoothing parameter in such a way that a good initial guess is available and Newton's
method is guaranteed to converge and to converge fast.

Version History
Introduced before R2006a

References
[1] C. Reinsch. "Smoothing by spline functions." Numer. Math. 10 (1967), 177–183.

See Also
csaps | spap2 | spapi | tpaps

Topics
“Introducing Spline Fitting” on page 8-2

 spaps

13-273

spcol
B-spline collocation matrix

Syntax
colmat = spcol(knots,k,tau)
colmat = spcol(knots,k,tau,arg1,arg2,...)

Description
colmat = spcol(knots,k,tau) returns the matrix, with length(tau) rows and
length(knots)-k columns, whose (i,j)th entry is

Dm(i)B j(tau(i))

This is the value at tau(i) of the m(i)th derivative of the jth B-spline of order k for the knot sequence
knots. Here, tau is a sequence of sites, assumed to be nondecreasing, and m = knt2mlt(tau), i.e.,
m(i) is #{j < i:tau(j) = tau(i)}, all i.

colmat = spcol(knots,k,tau,arg1,arg2,...) also returns that matrix, but gives you the
opportunity to specify some aspects.

If one of the argi is a character vector or string scalar with the same first two letters as in
'slvblk', the matrix is returned in the almost block-diagonal format (specialized for splines)
required by slvblk (and understood by bkbrk).

If one of the argi is a character vector or string scalar with the same first two letters as in
'sparse', then the matrix is returned in the sparse format of MATLAB.

If one of the argi is a character vector or string scalar with the same first two letters as in
'noderiv', multiplicities are ignored, i.e., m(i) is taken to be 1 for all i.

Examples
To solve approximately the non-standard second-order ODE

D2y(t) = 5 ⋅ (y(t)− sin(2t))

on the interval [0..π], using cubic splines with 10 polynomial pieces, you can use spcol in the
following way:

tau = linspace(0,pi,101); k = 4;
knots = augknt(linspace(0,pi,11),k);
colmat = spcol(knots,k,brk2knt(tau,3));
coefs = (colmat(3:3:end,:)/5-colmat(1:3:end,:))\(-sin(2*tau).');
sp = spmak(knots,coefs.');

You can check how well this spline satisfies the ODE by computing and plotting the residual, D2y(t) –
5· (y(t) – sin(2t)), on a fine mesh:

13 Functions

13-274

t = linspace(0,pi,501);
yt = fnval(sp,t);
D2yt = fnval(fnder(sp,2),t);
plot(t,D2yt - 5*(yt-sin(2*t)))
title(['residual error; to be compared to max(abs(D^2y)) = ',...
 num2str(max(abs(D2yt)))])

The statement spcol([1:6],3,.1+[2:4]) provides the matrix

ans =

 0.5900 0.0050 0
 0.4050 0.5900 0.0050
 0 0.4050 0.5900

in which the typical row records the values at 2.1, or 3.1, or 4.1, of all B-splines of order 3 for the
knot sequence 1:6. There are three such B-splines. The first one has knots 1,2,3,4, and its values are
recorded in the first column. In particular, the last entry in the first column is zero since it gives the
value of that B-spline at 4.1, a site to the right of its last knot.

If you add the character vector or string scalar 'sl' as an additional input to spcol, then you can
ask bkbrk to extract detailed information about the block structure of the matrix encoded in the
resulting output from spcol. Thus, the statement bkbrk(spcol(1:6,3,.1+2:4,'sl')) gives:

block 1 has 2 row(s)
 0.5900 0.0050 0
 0.4050 0.5900 0.0050
next block is shifted over 1 column(s)
block 2 has 1 row(s)
 0.4050 0.5900 0.0050
next block is shifted over 2 column(s)

Limitations
The sequence tau is assumed to be nondecreasing.

Algorithms
This is the most complex command in this toolbox since it has to deal with various ordering and
blocking issues. The recurrence relations are used to generate, simultaneously, the values of all B-
splines of order k having anyone of the tau(i) in their support.

A separate calculation is carried out for the (presumably few) sites at which derivative values are
required. These are the sites tau(i) with m(i) > 0. For these, and for every order k – j, j = j0, j0 –
1,...,0, with j0 equal to max(m), values of all B-splines of that order are generated by recurrence and
used to compute the jth derivative at those sites of all B-splines of order k.

The resulting rows of B-spline values (each row corresponding to a particular tau(i)) are then
assembled into the overall (usually rather sparse) matrix.

When the optional argument 'sl' is present, these rows are instead assembled into a convenient
almost block-diagonal form that takes advantage of the fact that, at any site tau(i), at most k B-
splines of order k are nonzero. This fact (together with the natural ordering of the B-splines) implies
that the collocation matrix is almost block-diagonal, i.e., has a staircase shape, with the individual
blocks or steps of varying height but of uniform width k.

 spcol

13-275

The command slvblk is designed to take advantage of this storage-saving form available when used,
in spap2, spapi, or spaps, to help determine the B-form of a piecewise-polynomial function from
interpolation or other approximation conditions.

See Also
slvblk | spap2 | spapi

13 Functions

13-276

spcrv
Spline curve by uniform subdivision

Syntax
spcrv(c,k)
spcrv(c)
spcrv(c,k,maxpnt)

Description
spcrv(c,k) provides a dense sequence f(tt) of points on the uniform B-spline curve f of order k
with B-spline coefficients c. Explicitly, this is the curve

f : t ∑
j = 1

n
B(t − k/2 j, ..., j + k) c(j), k2 ≤ t ≤ n + k

2

with B(·|a,...,z) the B-spline with knots a,...,z, and n the number of coefficients in c, i.e., [d,n] equals
size(c).

spcrv(c) chooses the order k to be 4.

spcrv(c,k,maxpnt) makes sure that at least maxpnt points are generated. The default value for
the maximum number of sites tt to be generated is 100.

The parameter interval that the site sequence tt fills out uniformly is the interval [k/2 .. (n-k/2)].

The output consists of the array f(tt).

Examples
The following would show a questionable broken line and its smoothed version:

points = [0 0 1 1 0 -1 -1 0 0 ;
 0 0 0 1 2 1 0 -1 -2];
plot(points(1,:),points(2,:),':')
values = spcrv(points,3);
hold on, plot(values(1,:),values(2,:)), hold off

Algorithms
Repeated midpoint knot insertion is used until there are at least maxpnt sites. There are situations
where use of fnplt would be more efficient.

See Also
fnplt

 spcrv

13-277

splinetool
Experiment with some spline approximation methods

Syntax
splinetool
splinetool(x,y)

Description
splinetool opens the Spline Tool, which lets you experiment with various spline approximation
methods. It provides you with choices for data, including the option of importing some data from the
workspace.

splinetool(x,y)opens the tool with the specified data x and y, which must be vectors of the same
length.

Examples

Experiment with Noisy Data

Run this code to open the Spline Tool and experiment with noisy data.

x = linspace(1,pi,101);
y = cos(x)+(rand(size(x))-.5)/10;
splinetool(x,y)

Explore End Conditions for Cubic Spline Interpolation

This example shows how to explore the various end conditions available with cubic spline
interpolation in the Spline Tool.

1 Type splinetool at the command line.
2 Select Import your own data from the initial screen, and accept the default function. You

should see the following display.

13 Functions

13-278

The default approximation is the cubic spline interpolant with the not-a-knot end condition.

The vector x of data sites is linspace(0,2*pi,31) and the values are cos(x). This differs
from simply providing the vector y of values in that the cosine function is explicitly recorded as
the underlying function. Therefore, the error shown in the graph is the error in the spline as an
approximation to the cosine rather than as an approximation to the given values. Notice the
resulting relatively large error, about 5e-5, near the endpoints.

3 For comparison, follow these steps:

a Click New in the List of approximations.
b In Approximation method, select complete from the list of End conditions.
c Since the first derivative of the cosine function is sine, adjust the first-derivative values to

their known values of zero at both the left end and the right end.

This procedure results in the display shown below. The right end slope is zero only up to round-
off. Bottomline tells you that the tool uses the function csape to create the spline.

 splinetool

13-279

The improvement in the error is only about 5e-6.
4 For further comparison, follow these steps:

a Click New in the List of approximations.
b In Approximation method, select natural from the list of End conditions.

Note the deterioration of the approximation near the ends, an error of about 2e-3, which is
much worse than with the not-a-knot end conditions.

5 For a final comparison, follow these steps:

a Click New in the List of approximations.
b Since the cosine function is periodic, in Approximation method, select periodic from the

list of End conditions.

Note the dramatic improvement in the approximation, back to an error of about 5e-6,
particularly compared to the natural end conditions.

Estimate the Second Derivative at Endpoint

This example uses cubic spline interpolation and least-squares approximation in the Spline Tool to
determine an estimate of the initial acceleration for a drag car.

13 Functions

13-280

1 Type splinetool at the command line or if the tool is already open, click File > Restart.
2 Select Richard Tapia's drag race data. The data shows the distance traveled by a drag car as a

function of time. The message window asks you to estimate the initial acceleration by setting the
initial speed to zero. Click OK, or press the space bar or Enter, to remove the message window.

3 In Approximation method, select complete from the list of End conditions.
4 Adjust the initial speed by changing the first derivative at the left endpoint to zero.
5 Look for the value of the initial acceleration, which is given by the value of the second derivative

at the left endpoint. You can toggle between the first derivative and the second derivative at this
endpoint by clicking on the left end button. The value of the second derivative should be around
187 in the units chosen. Select View > Show 2nd Derivative to see the result graphically.

6 For comparison, click New, then select Least-Squares Approximation as the Approximation
method. With this method, you can no longer specify end conditions. Instead, you may vary the
order of the method. Verify that the initial acceleration is close to the cubic interpolation value.

The results of this procedure are shown below.

Explore Least-Squares Approximation

This example encourages you to place five interior knots in such a way that the least-squares
approximation by cubic splines has an absolute error no bigger than .04 everywhere.

 splinetool

13-281

1 Type splinetool at the command line or if the tool is already open, click File > Restart.
2 Select Titanium heat data.
3 Select Least-Squares Approximation as the Approximation method.
4 Notice how poorly this selection approximates the data since there are no interior knots. To view

the current knots and add new knots, select Knots from Data, breaks/knots, weights. The
knots are now listed in Knots, and also displayed in the data graph as vertical lines. There are
just the two end knots, each with multiplicity 4.

5 Right-click in the data graph and select Add Knot. This option displays a crosshairs for you to
move with the mouse. Its precise horizontal location is shown in the edit field below the list of
knots. A mouse click places a new knot at the current location of the crosshairs. One possible
strategy is to add the knot at the place of maximum absolute error, as shown in the auxiliary
graph below the data graph.

If you right-click and select Replicate Knot, you increase the multiplicity of the current knot,
which is reflected by its repeated occurrence in Knots. To delete a specific knot, first select it in
either the list of knots or the data graph, and then right-click in the graph and select Delete
Knot.

6 You can also opt for an approximation using six polynomial pieces, which corresponds to five
interior knots. To specify this option, enter 6 as # pieces in Data, breaks/knots, weights.

13 Functions

13-282

7 After you have the five interior knots, try to make the error even smaller by moving the knots. To
select the knot you want to move, click its vertical line in the graph, and then use the control
below Knots in Data, breaks/knots, weights and observe how the error changes with the
movement of the knot. You can also use the edit field to overwrite the current knot location. Also
try adjust, which redistributes the current knot sequence.

8 Use Replicate in List of approximations to save any good knot distribution for later use.
Rename the replicated approximation to lstsqr by using Rename. To return to the original
approximation, click on its name in List of approximations.

Smoothing Spline

This example experiments with smoothing splines using the Spline Tool.

1 Type splinetool at the command line or, if the tool is already open, click File > Restart.
2 Select Titanium heat data.
3 In Approximation method, select Smoothing Spline.
4 Vary Parameter between 0 and 1, which changes the approximation from the least-squares

straight-line approximation to the “natural” cubic spline interpolant.
5 Vary Tolerance between 0 and some large value, even inf. The approximation changes from the

best possible one, the “natural” cubic spline interpolant, to the least-squares straight-line
approximation.

6 As you increase the Parameter value or decrease the Tolerance value, the error decreases.
However, a smaller error corresponds to more roughness, as measured by the size of the second
derivative. To see this result, select View > Show 2nd Derivative and vary the Parameter and
Tolerance values once again.

7 Modify the weights in the roughness measure to permit a more accurate but less smooth
approximation in the peak area while having a smoother, less accurate, approximation away from
the peak area.

a Select Jumps in Roughness Weight from Data, breaks/knots, weights.
b Select View > Show 2nd Derivative.
c Select any data point to the left of the peak in the data.
d Set the jump at the selected site to -1 by changing its value in the edit field below it. Since

the roughness weight for the very first site interval is 1, you have just set the roughness
weight to the right of the highlighted site to 0. Correspondingly, the second derivative has
become relatively small to the left of that site.

e Select any data point to the right of the peak in the data.
f Set the jump across the selected site to 1. Since the roughness weight just to the left of the

highlighted site is 0, you have just set the roughness weight to the right of the highlighted
site to 1. Correspondingly, the second derivative has become relatively small to the right of
that site. The total effect is a very smooth but not very accurate fit away from the peak, while
in the peak area, the spline fit is much better but the second derivative is much larger, as is
shown in the auxiliary graph below.

At the sites where there is a jump in the roughness weight, there is a corresponding jump in
the second derivative. If you increase the Parameter value, the error across the peak area
decreases, but the second derivative remains quite large, while the opposite holds true away
from the peak area.

 splinetool

13-283

Input Arguments
x — Data sites
vector

Data sites, specified as a vector of the same length of y. The data sites do not need to be distinct or
ordered, but there must be at least two distinct sites.

y — Data values
vector

Data values, specified as a vector of the same length of x.

Tips
Spline Tool is shown in the following figure comparing cubic spline interpolation with a smoothing
spline on sample data created by adding noise to the cosine function.

13 Functions

13-284

Select Approximation Methods

The approximation methods and options supported by the tool are shown below.

Approximation Method Option
Cubic Interpolating Spline Adjust the type and values of the end conditions.
Smoothing Spline Choose between cubic (order 4) and quintic (order 6) splines.

Adjust the value of the tolerance and/or smoothing parameter.
Adjust the weights in the error and roughness measures.

Least-Squares Approximation Vary the order from 1 to 14. The default order is 4, which gives
cubic approximating splines. Modify the number of polynomial
pieces. Add and move knots to improve the fit. Adjust the
weights in the error measure.

Spline Interpolation Vary the order from 2 to 14. The default order is 4, which gives
cubic spline interpolants. If the default knots supplied are not
satisfactory, you can move them around to vary the fit.

Plot Graphs

You can generate and compare several approximations to the same data. One of the approximations is
always marked as “current” using a thicker line width. The following displays are available:

 splinetool

13-285

• Data graph. It shows:

• Data
• Approximations chosen for display in List of approximations
• Current knot sequence or the current break sequence

• Auxiliary graph (if viewed) for the current approximation. You can view this graph by selecting any
one of the items in the View menu. It shows one of the following:

• First derivative
• Second derivative
• Error

By default, the error is the difference between the given data values and the value of the
approximation at the data sites. In particular, the error is zero (up to round-off) when the
approximation is an interpolant. However, if you provide the data values by specifying a function,
then the error displayed is the difference between that function and the current approximation. This
also happens if you change the y-label of the data graph to the name of a function.

Try Menu Options

You can annotate and print the graphs with the File > Print to Figure menu.

You can export the data and approximations to the workspace for further use or analysis with the File
> Export Data and File > Export Spline menus, respectively.

You can create, with the File > Generate Code menu, a function file that you can use to generate,
from the original data, any or all graphs currently shown. This file also provides you with a written
record of the commands used to generate the current graphs.

You can save, with the Replicate button, the current approximation before you experiment further. If,
at a later time, you click the saved approximation, the tool restores everything to the way it was,
including the data used in the construction of the saved approximation. The saved approximation
persists even if you have edited the data while working on other approximations.

You can add, delete, or move data, knots, and breaks by right-clicking in the graph, or by selecting
the appropriate item in the Edit menu.

You can toggle the grid or the legend in a graph with the Tools menu.

Version History
Introduced before R2006a

See Also
csape | csapi | csaps | spap2 | spapi | spaps

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-286

splpp, sprpp
Taylor coefficients from local B-coefficients

Syntax
[v,b] = splpp(tx,a)
[v,b] = sprpp(tx,a)

Description
These are utility commands of use in the conversion from B-form to ppform (and in certain
evaluations), but of no interest to the casual user.

[v,b] = splpp(tx,a) provides the matrices v and b, both of the same size [r,k] as a, and
related to the input in the following way.

For i=1:r, b(i,:) are the B-coefficients, with respect to the knot sequence
[tx(i,1:k-1),0,...,0], of the polynomial of order k on the interval [tx(i,k-1) .. tx(i,k)]
whose k B-spline coefficients, with respect to the knot sequence tx(i,:), are in a(i,:). This is
done by repeated knot insertion (of the knot 0). It is assumed that tx(i,k-1)<0<=tx(i,k).

For i=1:r, v(i,:) are the polynomial coefficients for that polynomial, i.e., v(i,j) is the number
Dk–js(0–)/k – j)!, j=1:k, with s having the knots tx(i,:) and the B-coefficients a(i,:).

[v,b] = sprpp(tx,a) carries out exactly the same job, except that now b(i,:) are the B-
coefficients for that polynomial with respect to the knot sequence [0,...,0,tx(i,k: 2*(k-1))],
and, correspondingly, v(i,j) is Dk–js(0 +)/k – j)!, j=1:k. Also, now it is assumed that
tx(i,k-1)<=0<tx(i,k).

Examples
The statement [v,b]=splpp([-2 -1 0 1],[0 1 0]) provides the sequence

 v = -1.0000 -1.0000 0.5000 = D2s(0–)/2,Ds(0–),s(0–)

with s the B-spline with knots -2, -1, 0, 1. This is so because the l in splpp indicates the limit from
the left, and the second argument, [0 1 0], indicates the spline s in question to be

s = 0 × B(⋅ [?, − 2, − 1, 0]) + 1 × B(⋅ [− 2, − 1, 0, 1]) + 0 × B(⋅ [− 1, 0, 1, ?])

i.e., this particular linear combination of the third-order B-splines for the knot sequence ..., -2,
-1,0,1,... (Note that the values calculated do not depend on the knots marked ?.) The above statement
also provides the sequence b = 0 1.0000 0.5000 of B-spline coefficients for the polynomial piece
of s on the interval [-1. .0], and with respect to the knot sequence ?, -2, -1, 0, 0, ?.

In other words, on the interval [-1. .0], the B-spline with knots 2, -1, 0, 1 can be written

0 × B(⋅ [?, − 2, − 1, 0]) + 1 × B(⋅ [− 2, − 1, 0, 0]) + 5 × B(⋅ [− 1, 0, 0, ?])

The statement [v,b]=sprpp([-1 0 1 2],[1 0 0]) provides the sequence

 splpp, sprpp

13-287

v = [0.5000 -1.0000 0.5000] =D2s(0 +)/2, Ds(0 +), s(0 +)

with s the B-spline with knots ?,-1,0,1. Its polynomial piece on the interval [0..1] is independent of the
choice of ?, so we might as well think of ? as -2, i.e., we are dealing with the same B-spline as before.
Note that the last two numbers agree with the limits from the left computed above, while the first
number does not. This reflects the fact that a quadratic B-spline with simple knots is continuous with
continuous first, but discontinuous second, derivative. (It also reflects the fact that the leftmost knot
of a B-spline is irrelevant for its right-most polynomial piece.) The sequence b = 0.5000 0 0 also
provided states that, on the interval [0. .1], the B-spline B(·|[?,–1,0,1]) can be written

0.5 × B(⋅ [0, 0, 0, 1]) + 0 × B(⋅ [0, 0, 1, 2]) + 0 × B(⋅ [0, 1, 2, ?])

13 Functions

13-288

spmak
Put together spline in B-form

Syntax
spmak(knots,coefs)
spmak(knots,coefs,sizec)
spmak
sp = spmak(knots,coeffs)

Description
The command spmak(...) puts together a spline function in B-form, from minimal information, with
the rest inferred from the input. fnbrk returns all the parts of the completed description. In this way,
the actual data structure used for the storage of this form is easily modified without any effect on the
various fn... commands that use this construct.

spmak(knots,coefs) returns the B-form of the spline specified by the knot information in knots
and the coefficient information in coefs.

The action taken by spmak depends on whether the function is univariate or multivariate, as
indicated by knots being a sequence or a cell array. For the description, let sizec be size(coefs).

If knots is a sequence (required to be non-decreasing), then the spline is taken to be univariate, and
its order k is taken to be length(knots)-sizec(end). This means that each `column'
coefs(:,j) of coefs is taken to be a B-spline coefficient of the spline, hence the spline is taken to
be sizec(1:end-1)-valued. The basic interval of the B-form is [knots(1) .. knots(end)].

Knot multiplicity is held to be ≤ k. This means that the coefficient coefs(:,j) is simply ignored in
case the corresponding B-spline has only one distinct knot, i.e., in case knots(j) equals knots(j
+k).

If knots is a cell array, of length m, then the spline is taken to be m-variate, and coefs must be an (r
+m)-dimensional array, – except when the spline is to be scalar-valued, in which case, in contrast to
the univariate case, coefs is permitted to be an m-dimensional array, but sizec is reset by

sizec = [1, sizec]; r = 1;

The spline is sizec(1:r)-valued. This means the output of the spline is an array with r dimensions,
e.g., if sizec(1:2) = [2, 3] then the output of the spline is a 2-by-3 matrix.

The spline is sizec(1:r)-valued, the ith entry of the m-vector k is computed as
length(knots{i}) - sizec(r+i), i=1:m, and the ith entry of the cell array of basic intervals is
set to [knots{i}(1), knots{i}(end)].

spmak(knots,coefs,sizec) lets you supply the intended size of the array coefs. Assuming that
coefs is correctly sized, this is of concern only in the rare case that coefs has one or more trailing
singleton dimensions. For, MATLAB suppresses trailing singleton dimensions, hence, without this
explicit specification of the intended size of coefs, spmak would interpret coefs incorrectly.

spmak prompts you for knots and coefs.

 spmak

13-289

sp = spmak(knots,coeffs) returns the spline sp.

Examples
spmak(1:6,0:2) constructs a spline function with basic interval [1. .6], with 6 knots and 3
coefficients, hence of order 6 - 3 = 3.

spmak(t,1) provides the B-spline B(·|t) in B-form.

The coefficients may be d-vectors (e.g., 2-vectors or 3-vectors), in which case the resulting spline is a
curve or surface (in R2 or R3).

If the intent is to construct a 2-vector-valued bivariate polynomial on the rectangle [–1..1] × [0..1],
linear in the first variable and constant in the second, say

 coefs = zeros([2 2 1]); coefs(:,:,1) = [1 0;0 1];

then the straightforward

sp = spmak({[-1 -1 1 1],[0 1]},coefs);

will result in the error message 'There should be no more knots than coefficients',
because the trailing singleton dimension of coefs will not be perceived by spmak, while proper use
of that third argument, as in

sp = spmak({[-1 -1 1 1],[0 1]},coefs,[2 2 1]);

will succeed. Replacing here [2 2 1] by size(coefs) would not work.

See the example “Intro to B-form” for other examples.

Diagnostics
There will be an error return if the proposed knot sequence fails to be nondecreasing, or if the
coefficient array is empty, or if there are not more knots than there are coefficients. If the spline is to
be multivariate, then this last diagnostic may be due to trailing singleton dimensions in coefs.

See Also
fnbrk

13 Functions

13-290

spterms
Explain spline terms

Syntax
spterms(term)
expl = spterms(term)
[...,term] = spterms(...)

Description
spterms(term) provides, in a message box, an explanation of the technical term indicated by the
character vector or string scalar term as used in the Curve Fitting Toolbox spline functions and,
specifically, in the splinetool. Only the first few (but at least two) letters of the desired term need
to be specified, and the full term is shown in the title of the message box.

expl = spterms(term) returns, in expl, the character vector, or cell array of character vectors,
comprising the explanation of the desired term.

[...,term] = spterms(...) also returns, in term, the fully spelled-out term actually used.

Examples
spterms('sp') gives an explanation of the term `spline', while spterms('spline i') explains
the terms `spline interpolation'.

help spterms provides the list of all available terms.

See Also
splinetool

 spterms

13-291

stcol
Scattered translates collocation matrix

Syntax
colmat = stcol(centers,x,type)
colmat = stcol(...,'tr')

Description
colmat = stcol(centers,x,type) is the matrix whose (i,j)th entry is

ψ j x(: , i) , i = 1:size(x, 2), j = 1:n

with the bivariate functions ψj and the number n depending on the centers and the character vector
or string scalar type, as detailed in the description of stmak.

centers and x must be matrices with the same number of rows.

The default for type is the character vector 'tp', and for this default, n equals size(centers,2),
and the functions ψj are given by

ψ j(x) = ψ x− centers(: , j) , j = 1:n

with ψ the thin-plate spline basis function

ψ(x) = x 2log x 2

and with |x| denoting the Euclidean norm of the vector x.

Note See stmak for a description of other possible values for type.

The matrix colmat is the coefficient matrix in the linear system

∑
j

a jψ j(x(: , i)) = yi, i = 1:size(x, 2)

that the coefficients aj of the function f = Σjajψj must satisfy in order that f interpolate the value yi at
the site x(:,i), all i.

colmat = stcol(...,'tr') returns the transpose of the matrix returned by stcol(...).

Examples
Example 1. The following evaluates and plots the function

f (x) = ψ(x− c1) + ψ(x− c2) + ψ(x− c3)− 3.5ψ(x)

13 Functions

13-292

on a regular mesh, with ψ the above thin-plate basis function, and with c1, c2, c3 three points on the
unit circle; see the figure below.

a = [0,2/3*pi,4/3*pi]; centers = [cos(a), 0; sin(a), 0];
[xx,yy] = ndgrid(linspace(-2,2,45));
xy = [xx(:) yy(:)].';
coefs = [1 1 1 -3.5];
zz = reshape(coefs*stcol(centers,xy,'tr') , size(xx));
surf(xx,yy,zz), view([240,15]), axis off

Example 2. The following also evaluates, on the same mesh, and plots the length of the gradient of
the function in Example 1.

zz = reshape(sqrt(...
 ([coefs,0]*stcol(centers,xy,'tp10','tr')).^2 + ...
 ([coefs,0]*stcol(centers,xy,'tr','tp01')).^2),
size(xx));
figure, surf(xx,yy,zz), view([220,-15]), axis off

See Also
spcol | stmak

 stcol

13-293

stmak
Put together function in stform

Syntax
stmak(centers,coefs)
st = stmak(centers,x,type)
st = stmak(centers,coefs,type,interv)

Description
stmak(centers,coefs) returns the stform of the function f given by

f (x) = ∑
j = 1

n
coefs(: , j) ⋅ ψ(x− centers(: , j))

with

ψ(x) = x 2log x 2

the thin-plate spline basis function, and with |x| denoting the Euclidean norm of the vector x.

centers and coefs must be matrices with the same number of columns.

st = stmak(centers,x,type) stores in st the stform of the function f given by

f (x) = ∑
j = 1

n
coefs(: , j) ⋅ ψ j(x)

with the ψj as indicated by the character vector or string scalar type, which can be one of the
following:

• 'tp00', for the thin-plate spline;
• 'tp10', for the first derivative of a thin-plate spline with respect to its first argument;
• 'tp01', for the first derivative of a thin-plate spline with respect to its second argument;
• 'tp', the default.

Here are the details.

'tp00' ψj(x) = φ(|x – cj|2), cj =centers(:,j), j=1:n-3

with φ(t) = tlog(t)

ψn–2(x) = x(1)

ψn–1(x) = x(2)

ψn(x) = 1

13 Functions

13-294

'tp10' ψj(x) = φ(|x – cj|2), cj =centers(:,j), j=1:n-1

with φ(t) = (D1t)(logt + 1), and D1t the partial derivative of t = t(x) = |x – cj|2

with respect to x(1)

ψn(x) = 1
'tp01' ψj(x) = φ(|x – cj|2), cj =centers(:,j), j=1:n-1

with φ(t) = (D2t)(logt + 1), and D2t the partial derivative of t = t(x) = |x – cj|2

with respect to x(2)

ψn(x) = 1
'tp'
(default)

ψj(x) = φ(|x – cj|2), cj =centers(:,j), j=1:n

with φ(t) = tlog(t)

st = stmak(centers,coefs,type,interv) also specifies the basic interval for the stform, with
interv{j} specifying, in the form [a,b], the range of the jth variable. The default for interv is
the smallest such box that contains all the given centers.

Examples
Example 1. The following generates the figure below, of the thin-plate spline basis function,
ψ(x) = x 2log x 2, but suitably restricted to show that this function is negative near the origin. For
this, the extra lines are there to indicate the zero level.

inx = [-1.5 1.5]; iny = [0 1.2];
fnplt(stmak([0;0],1),{inx,iny})
hold on, plot(inx,repmat(linspace(iny(1),iny(2),11),2,1),'r')
view([25,20]),axis off, hold off

 stmak

13-295

Example 2. We now also generate and plot, on the very same domain, the first partial derivative D2ψ
of the thin-plate spline basis function, with respect to its second argument.

inx = [-1.5 1.5]; iny = [0 1.2];
fnplt(stmak([0;0],[1 0],'tp01',{inx,iny}))
view([13,10]),shading flat,axis off

Note that, this time, we have explicitly set the basic interval for the stform.

The resulting figure, below, shows a very strong variation near the origin. This reflects the fact that
the second derivatives of ψ have a logarithmic singularity there.

See Also
stcol

13 Functions

13-296

subplus
Calculate positive part of function

Syntax
xp = subplus(x)

Description
xp = subplus(x) returns the positive part of x, (x)+, which is x if x is nonnegative, and 0 if x is
negative. In other words, xp equals max(x,0). If x is an array, this operation is applied entry by
entry.

Examples

Plot Positive Part of Simple Function

Compute the positive part of integers in the range from -2 to 2 by using the subplus function.

x = -2:2;
xp = subplus(x);

Plot the subplus function on the interval from -2 to 2.

plot(x,xp)
ylim([-0.5 2.5])

 subplus

13-297

Plot Hat Function Using subplus Function

Create a hat function by creating an anonymous function hat that uses the subplus function.

hat = @(x) subplus(x) - 2*subplus(x-1) + subplus(x-2);

Plot the hat function on the interval from -0.5 to 2.5.

x = -0.5:0.5:2.5;
plot(x,hat(x))
xlim([-0.5 2.5])

13 Functions

13-298

You can also describe the hat function by using the spline spmak(0:2,1).

Input Arguments
x — Input function
scalar | vector | matrix

Function of which you want to calculate the positive part, specified as a scalar, vector, or matrix.
Data Types: single | double

Output Arguments
xp — Positive part
scalar | vector | matrix

Positive part of x, returned as a scalar, vector, or matrix.

Version History
Introduced in R2006b

 subplus

13-299

See Also
spline | fit on page 13-79

Topics
“Introducing Spline Fitting” on page 8-2

13 Functions

13-300

titanium
Titanium test data

Syntax
[x,y] = titanium

Description
[x,y] = titanium returns measurements of a certain property of titanium as a function of
temperature. Since their use in [1], these data have become a standard test for data fitting since they
are hard to fit by classical techniques and have a significant amount of noise.

Examples
The plot of the data shown below is generated by the following commands:

[x,y] = titanium; plot(x,y,'ok'), set(gca,'Fontsize',16)

References
[1] C. de Boor and J. R. Rice. "Least squares cubic spline approximation II - Variable knots." CSD TR

21, Comp.Sci., Purdue Univ., April 1968.

 titanium

13-301

tpaps
Thin-plate smoothing spline

Syntax
st = tpaps(x,y)
st = tpaps(x,y,p)
[...,P] = tpaps(...)

Description
st = tpaps(x,y) is the stform of a thin-plate smoothing spline f for the given data sites x(:,j)
and the given data values y(:,j). The x(:,j) must be distinct points in the plane, the values can be
scalars, vectors, matrices, even ND-arrays, and there must be exactly as many values as there are
sites.

The thin-plate smoothing spline f is the unique minimizer of the weighted sum

pE(f) + (1− p)R(f)

with E(f) the error measure

E(f) = ∑
j

y(: , j)− f x(: , j) 2

and R(f) the roughness measure

R(f) =∫(D1D1f
2

+ 2 D1D2f 2 + D2D2f 2)

Here, the integral is taken over all of R2, |z|2 denotes the sum of squares of all the entries of z, and Dif
denotes the partial derivative of f with respect to its i-th argument, hence the integrand involves
second partial derivatives of f. The function chooses the smoothing parameter p so that (1-p)/p
equals the average of the diagonal entries of the matrix A, with A + (1-p)/p*eye(n) the
coefficient matrix of the linear system for the n coefficients of the smoothing spline to be determined.
This ensures staying in between the two extremes of interpolation (when p is close to 1 and the
coefficient matrix is essentially A) and complete smoothing (when p is close to 0 and the coefficient
matrix is essentially a multiple of the identity matrix). This serves as a good first guess for p.

st = tpaps(x,y,p) also inputs the smoothing parameter, p, a number between 0 and 1. As the
smoothing parameter varies from 0 to 1, the smoothing spline varies, from the least-squares
approximation to the data by a linear polynomial when p is 0, to the thin-plate spline interpolant to
the data when p is 1.

[...,P] = tpaps(...) also returns the value of the smoothing parameter used in the final spline
result whether or not you specify p. This syntax is useful for experimentation in which you can start
with [pp,P] = tpaps(x,y) and obtain a reasonable first guess for p.

Examples

13 Functions

13-302

Recover the Underlying Exact Smooth Values from Noised Data

The following code obtains values of a smooth function at 31 randomly chosen sites, adds some
random noise to these values, and then uses tpaps to recover the underlying exact smooth values. To
illustrate how well tpaps does in this case, the code plots, in addition to the smoothing spline, the
exact values (as black balls) as well as each arrow leading from a smoothed value to the
corresponding noisy value.

rng(23); nxy = 31;
xy = 2*(rand(2,nxy)-.5); vals = sum(xy.^2);
noisyvals = vals + (rand(size(vals))-.5)/5;
st = tpaps(xy,noisyvals); fnplt(st), hold on
avals = fnval(st,xy);
plot3(xy(1,:),xy(2,:),vals,'wo','markerfacecolor','k')
quiver3(xy(1,:),xy(2,:),avals,zeros(1,nxy),zeros(1,nxy), ...
 noisyvals-avals,'r'), hold off

Use an Interpolating Thin-Plate Spline to Construct a Map

The following code uses an interpolating thin-plate spline to vector-valued data values to construct a
map, from the plane to the plane, that carries the unit square x: x j ≤ 1, j = 1:2 approximately
onto the unit disk x:x 1 2 + x 2 2 ≤ 1 .

 tpaps

13-303

n = 64; t = linspace(0,2*pi,n+1); t(end) = [];
values = [cos(t); sin(t)];
centers = values./repmat(max(abs(values)),2,1);
st = tpaps(centers, values, 1);
fnplt(st), axis equal

Note the choice of 1 for the smoothing parameter here, to obtain interpolation.

Input Arguments
x — Data sites
vector | cell array

Data sites of data values y to be fit, specified as a vector or as a cell array for multivariate data.
Spline f is created with knots at each data site x such that f(x(j)) = y(:,j) for all values of j.

For multivariate, gridded data, you can specify x as a cell array that specifies the data site in each
variable dimension: f(x1(i),x2(j),...xn(k)) = y(:,i,j,...,k).

y — Data values to fit
vector | matrix | array

Data values to fit during creation of the spline, specified as a vector, matrix, or array. Data values
y(:,j) can be scalars, matrices, or n-dimensional arrays. Data values given at the same data site x
are averaged.

13 Functions

13-304

Data Types: single | double

p — Smoothing parameter
scalar in the range [0,1] | vector | cell array | empty array

Smoothing parameter, specified as a scalar value between 0 and 1 or as a cell array of values for
multivariate data. You can also specify values for the roughness measure weights λ by providing p as
a vector. To provide roughness measure weights for multivariate data, use a cell array of vectors. If
you provide an empty array, the function chooses a default value for p based on the data sites x and
the default value of 1 for the roughness measure weight λ.

The smoothing parameter determines the relative weight to place on the contradictory demands of
having f be smooth or having f be close to the data. For p = 0, f is the least-squares straight-line fit to
the data. For p = 1, f is the variational, or natural, cubic spline interpolant. As p moves from 0 to 1,
the smoothing spline changes from one extreme to the other.

The favorable range for p is often near 1/(1 + h3/6), where h is the average spacing of the data sites.
The function chooses a default value for p within this range. For uniformly spaced data, you can
expect a close fit with p = 1(1 + h3/60) and some satisfactory smoothing with p = 1/(1 + h3/0.6). You
can input p > 1, but this choice leads to a smoothing spline even rougher than the variational cubic
spline interpolant.

If the input p is negative or empty, then the function uses the default value for p.

You can specify the roughness measure weights λ alongside the smoothing parameter by providing p
as a vector. This vector must be the same size as x, with the ith entry the value of λ on the interval
(x(i-1)...x(i)), for i = 2:length(x). The first entry of the input vector p is the desired value
of the smoothness parameter p. By providing roughness measure weights, you can make the resulting
smoothing spline smoother (with larger weight values) or closer to the data (with smaller weight
values) in different parts of the interval. Roughness measure weights must be nonnegative.

If you have difficulty choosing p but have some feeling for the size of the noise in y, consider using
spaps(x,y,tol) instead. This function chooses p such that the roughness measure is as small as
possible, subject to the condition that the error measure does not exceed tol. In this case, the error
measure usually equals the specified value for tol.
Data Types: single | double

Output Arguments
st — Spline structure
spline structure

Spline, returned as a structure with these fields.

Form — Form of spline
st-tp00 | st-tp10 | st-tp01 | st-tp

Form of the spline, returned as st-tp00, st-tp10, st-tp01, or st-tp.

Centers — Sequence of sites
matrix | array

Sequence of sites, returned as a matrix or as an array for multivariate data.

 tpaps

13-305

Coefs — Coefficients of polynomials
matrix | array

Coefficients of polynomials for each piece, returned as a matrix or as an array for multivariate data.

Ncenters — Number of centers
scalar | vector

Number of sequence of sites.

Number — Number of polynomial pieces
scalar | vector

Number of polynomial pieces describing the spline, returned as a scalar or as a vector of numbers of
pieces in each variable for multivariate data.

Dim — Dimensionality
scalar

Dimensionality of the target function, returned as a scalar.

Interv — Basic interval
cell array

Basic interval for the stform that contains all the given centers, returned as an array.

P — Smoothing parameter
scalar | cell array

Smoothing parameter used to calculate the spline, returned as a scalar or as a cell array of scalar
values for multivariate data. P is between 0 and 1.

Limitations
The determination of the smoothing spline involves the solution of a linear system with as many
unknowns as there are data points. Since the matrix of this linear system is full, the solving can take
a long time even if, as is the case here, an iterative scheme is used when there are more than 728
data points. The convergence speed of that iteration is strongly influenced by p, and is slower the
larger p is. So, for large problems, use interpolation, i.e., p equal to 1, only if you can afford the time.

Version History
Introduced in R2006b

See Also
csaps | spaps | stmak

Topics
“Introducing Spline Fitting” on page 8-2
“Constructing and Working with stform Splines” on page 10-28
“Multivariate and Rational Splines” on page 10-6

13 Functions

13-306

type
Name of cfit, sfit, or fittype object

Syntax
name = type(fun)

Description
name = type(fun) returns the custom or library name name of the cfit, sfit, or fittype object
fun as a character array.

Examples
f = fittype('a*x^2+b*exp(n*x)');
category(f)
ans =
custom
type(f)
ans =
customnonlinear

g = fittype('fourier4');
category(g)
ans =
library
type(g)
ans =
fourier4

Version History
Introduced in R2006b

See Also
fittype | category

Topics
“List of Library Models for Curve and Surface Fitting” on page 4-10

 type

13-307

Bibliography
[1] Barber, C. B., D. P. Dobkin, and H. T. Huhdanpaa. “The Quickhull Algorithm for Convex Hulls.”

ACM Transactions on Mathematical Software. Vol. 22, No. 4, 1996, pp. 469–483.

[2] Bevington, P. R., and D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences.
2nd ed. London: McGraw-Hill, 1992.

[3] Branch, M. A., T. F. Coleman, and Y. Li. “A Subspace, Interior, and Conjugate Gradient Method for
Large-Scale Bound-Constrained Minimization Problems.” SIAM Journal on Scientific
Computing. Vol. 21, No. 1, 1999, pp. 1–23.

[4] Carroll, R. J., and D. Ruppert. Transformation and Weighting in Regression. London: Chapman &
Hall, 1988.

[5] Chambers, J., W. S. Cleveland, B. Kleiner, and P. Tukey. Graphical Methods for Data Analysis.
Belmont, CA: Wadsworth International Group, 1983.

[6] Cleveland, W. S. “Robust Locally Weighted Regression and Smoothing Scatterplots.” Journal of the
American Statistical Association. Vol. 74, 1979, pp. 829–836.

[7] Cleveland, W. S., and S. J. Devlin. “Locally Weighted Regression: An Approach to Regression
Analysis by Local Fitting.” Journal of the American Statistical Association. Vol. 83, 1988, pp.
596–610.

[8] Daniel, C., and F. S. Wood. Fitting Equations to Data. Hoboken, NJ: Wiley-Interscience, 1980.

[9] DeAngelis, D. J., J. R. Calarco, J. E. Wise, H. J. Emrich, R. Neuhausen, and H. Weyand. “Multipole
Strength in 12C from the (e,e'α) Reaction for Momentum Transfers up to 0.61 fm-1.” Physical
Review C. Vol. 52, No. 1, 1995, pp. 61–75.

[10] de Boor, C. A Practical Guide to Splines. Berlin: Springer-Verlag, 1978.

[11] Draper, N. R., and H. Smith. Applied Regression Analysis. 3rd ed. Hoboken, NJ: Wiley-
Interscience, 1998.

[12] DuMouchel, W., and F. O'Brien. “Integrating a Robust Option into a Multiple Regression
Computing Environment.” Computing Science and Statistics: Proceedings of the 21st
Symposium on the Interface. (K. Berk and L. Malone, eds.) Alexandria, VA: American
Statistical Association, 1989, pp. 297–301.

[13] Goodall, C. “A Survey of Smoothing Techniques.” Modern Methods of Data Analysis. (J. Fox and J.
S. Long, eds.) Newbury Park, CA: Sage Publications, 1990, pp. 126–176.

[14] Holland, P. W., and R. E. Welsch. “Robust Regression Using Iteratively Reweighted Least-
Squares.” Communications in Statistics—Theory and Methods. Vol. A6, 1977, pp. 813–827.

[15] Huber, P. J. Robust Statistics. Hoboken, NJ: Wiley-Interscience, 1981.

A

[16] Hutcheson, M. C. “Trimmed Resistant Weighted Scatterplot Smooth.” Master's Thesis. Cornell
University, Ithaca, NY, 1995.

[17] Levenberg, K. “A Method for the Solution of Certain Problems in Least Squares.” Quarterly of
Applied Mathematics. Vol. 2, 1944, pp. 164–168.

[18] Marquardt, D. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” SIAM
Journal on Applied Mathematics. Vol. 11, 1963, pp. 431–441.

[19] Orfanidis, S. J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[20] Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art
of Scientific Computing. Cambridge, UK: Cambridge University Press, 1993.

[21] Street, J. O., R. J. Carroll, and D. Ruppert. “A Note on Computing Robust Regression Estimates
Via Iteratively Reweighted Least Squares.” The American Statistician. Vol. 42, 1988, pp. 152–
154.

[22] Watson, David E. Contouring: A Guide to the Analysis and Display of Spatial Data. Tarrytown, NY:
Pergamon, 1992.

A type

A-2

	Getting Started
	Curve Fitting Toolbox Product Description
	Curve Fitting Tools
	Curve Fitting
	Interactive Curve Fitting
	Programmatic Curve Fitting

	Surface Fitting
	Interactive Surface Fitting
	Programmatic Surface Fitting

	Spline Fitting
	About Splines in Curve Fitting Toolbox
	Interactive Spline Fitting
	Programmatic Spline Fitting

	Interactive Fitting
	Interactive Curve and Surface Fitting
	Introducing Curve Fitter App
	Fit Curve
	Fit Surface
	Model Types for Curves and Surfaces
	Selecting Data to Fit in Curve Fitter App
	Save and Reopen Sessions

	Data Selection
	Selecting Data to Fit in Curve Fitter App
	Selecting Compatible Size Surface Data
	Troubleshooting Data Problems

	Create Multiple Fits in Curve Fitter App
	Refining Your Fit
	Creating Multiple Fits
	Displaying Multiple Fits Simultaneously
	Using the Statistics in the Table of Fits

	Compare Fits in Curve Fitter App
	Interactive Curve Fitter Workflow
	Loading Data and Creating Fits
	Determining the Best Fit
	Analyzing Best Fit in the Workspace
	Saving Your Work

	Surface Fitting to Franke Data

	Programmatic Curve and Surface Fitting
	Curve and Surface Fitting
	Fitting a Curve
	Fitting a Surface
	Model Types and Fit Analysis
	Workflow for Command Line Fitting

	Curve and Surface Fitting Objects and Object Functions
	Curve Fitting Objects
	Curve Fitting Object Functions
	Surface Fitting Objects and Object Functions

	Linear and Nonlinear Regression
	Parametric Fitting
	Parametric Fitting with Library Models
	Select Model Type
	Center and Scale Data
	Specify Fit Options and Optimized Starting Points

	List of Library Models for Curve and Surface Fitting
	Use Library Models to Fit Data
	Library Model Types
	Model Names and Equations

	Polynomial Models
	About Polynomial Models
	Fit Polynomial Models Interactively
	Fit Polynomials Using the Fit Function
	Polynomial Model Fit Options
	Defining Polynomial Terms for Polynomial Surface Fits

	Exponential Models
	About Exponential Models
	Fit Exponential Models Interactively
	Fit Exponential Models Using the fit Function

	Fit Fourier Models
	About Fourier Series Models
	Fit Fourier Model Interactively in Curve Fitter App
	Fit Fourier Model at the Command Line

	Gaussian Models
	About Gaussian Models
	Fit Gaussian Models Interactively
	Fit Gaussian Models Using the fit Function

	Power Series
	About Power Series Models
	Fit Power Series Models Interactively
	Fit Power Series Models Using the fit Function

	Rational Polynomials
	About Rational Models
	Fit Rational Models Interactively
	Selecting a Rational Fit at the Command Line
	Example: Rational Fit

	Sum of Sines Models
	About Sum of Sines Models
	Fit Sum of Sine Models Interactively
	Selecting a Sum of Sine Fit at the Command Line

	Weibull Distributions
	About Weibull Distribution Models
	Fit Weibull Models Interactively
	Selecting a Weibull Fit at the Command Line

	Introduction to Least-Squares Fitting
	Calculating Residuals
	Error Assumptions
	Linear Least Squares
	Weighted Least Squares
	Robust Least Squares
	Nonlinear Least Squares

	Custom Linear and Nonlinear Regression
	Custom Models
	Custom Models vs. Library Models
	Selecting a Custom Equation Fit Interactively
	Selecting a Custom Equation Fit at the Command Line

	Custom Linear Fitting
	About Custom Linear Models
	Selecting a Linear Fitting Custom Fit Interactively
	Selecting Linear Fitting at the Command Line
	Fit Custom Linear Legendre Polynomials

	Custom Nonlinear Census Fitting
	Custom Nonlinear ENSO Data Analysis
	Load Data and Fit Library and Custom Fourier Models
	Use Fit Options to Constrain a Coefficient
	Create Second Custom Fit with Additional Terms and Constraints
	Create a Third Custom Fit with Additional Terms and Constraints

	Gaussian Fitting with an Exponential Background
	Surface Fitting to Biopharmaceutical Data

	Interpolation and Smoothing
	Nonparametric Fitting
	Interpolation with Curve Fitting Toolbox
	About Interpolation Methods
	Selecting an Interpolant Fit

	Extrapolation for Interpolant Fit Types
	Selecting an Extrapolation Method

	Smoothing Splines
	About Smoothing Splines
	Select Smoothing Spline Fit Interactively
	Fit Smoothing Spline Models Using the fit Function
	Compare Cubic and Smoothing Spline Fit Using Curve Fitter

	Lowess Smoothing
	About Lowess Smoothing
	Select Lowess Fit Interactively
	Fit Lowess Models Using the fit Function

	Fit Smooth Surfaces to Investigate Fuel Efficiency
	Filtering and Smoothing Data
	About Data Filtering and Smoothing
	Moving Average Filtering
	Savitzky-Golay Filtering
	Local Regression Smoothing
	Example: Smoothing Data
	Example: Smoothing Data Using Loess and Robust Loess

	Fit Postprocessing
	Explore and Customize Plots
	Displaying Fit and Residual Plots
	Viewing Surface Plots and Contour Plots
	Using Zoom, Pan, Data Cursor, and Outlier Exclusion
	Customizing the Fit Display
	Print to MATLAB Figures

	Remove Outliers
	Remove Outliers Interactively
	Exclude Data Ranges
	Remove Outliers Programmatically

	Select Validation Data
	Generate Code and Export Fits to the Workspace
	Generating Code from the Curve Fitter App
	Exporting a Fit to the Workspace

	Evaluate a Curve Fit
	Evaluate a Surface Fit
	Compare Fits Programmatically
	Evaluating Goodness of Fit
	How to Evaluate Goodness of Fit
	Goodness-of-Fit Statistics

	Residual Analysis
	Plotting and Analysing Residuals
	Example: Residual Analysis

	Confidence and Prediction Bounds
	About Confidence and Prediction Bounds
	Confidence Bounds on Coefficients
	Prediction Bounds on Fits
	Compute Prediction Intervals

	Differentiating and Integrating a Fit

	Spline Fitting
	About Splines
	Introducing Spline Fitting
	Spline Overview
	Interactive Spline Fitting
	Programmatic Spline Fitting

	Curve Fitting Toolbox Splines and MATLAB Splines
	Curve Fitting Toolbox Splines
	Splines
	MATLAB Splines
	Expected Background
	Vector Data Type Support
	Spline Function Naming Conventions
	Arguments for Curve Fitting Toolbox Spline Functions
	Acknowledgments

	Simple Spline Examples
	Cubic Spline Interpolation
	Cubic Spline Interpolant of Smooth Data
	Periodic Data
	Other End Conditions
	General Spline Interpolation
	Knot Choices
	Smoothing
	Least Squares

	Vector-Valued Functions
	Fitting Values at N-D Grid with Tensor-Product Splines
	Fitting Values at Scattered 2-D Sites with Thin-Plate Smoothing Splines
	Postprocessing Splines

	Types of Splines
	Types of Splines: ppform and B-form
	Polynomials vs. Splines
	ppform
	B-form
	Knot Multiplicity

	B-Splines and Smoothing Splines
	B-Spline Properties
	Variational Approach and Smoothing Splines

	Multivariate and Rational Splines
	Multivariate Splines
	Rational Splines

	The ppform
	Introduction to ppform
	Definition of ppform

	Constructing and Working with ppform Splines
	Constructing a ppform
	Working With ppform Splines
	Example ppform

	The B-form
	Introduction to B-form
	Definition of B-form
	B-form and B-Splines
	B-Spline Knot Multiplicity
	Choice of Knots for B-form

	Constructing and Working with B-form Splines
	Construction of B-form
	Working With B-form Splines
	Example: B-form Spline Approximation to a Circle

	Multivariate Tensor Product Splines
	Introduction to Multivariate Tensor Product Splines
	B-form of Tensor Product Splines
	Construction With Gridded Data
	ppform of Tensor Product Splines
	Example: The Mobius Band

	NURBS and Other Rational Splines
	Introduction to Rational Splines
	rsform: rpform, rBform

	Constructing and Working with Rational Splines
	Rational Spline Example: Circle
	Rational Spline Example: Sphere
	Functions for Working With Rational Splines

	Constructing and Working with stform Splines
	Introduction to the stform
	Construction and Properties of the stform
	Working with the stform

	Advanced Spline Examples
	Least-Squares Approximation by Natural Cubic Splines
	Problem
	General Resolution
	Need for a Basis Map
	A Basis Map for “Natural” Cubic Splines
	The One-line Solution
	The Need for Proper Extrapolation
	The Correct One-Line Solution
	Least-Squares Approximation by Cubic Splines

	Solving A Nonlinear ODE
	Problem
	Approximation Space
	Discretization
	Numerical Problem
	Linearization
	Linear System to Be Solved
	Iteration

	Chebyshev Spline Construction
	What Is a Chebyshev Spline?
	Choice of Spline Space
	Initial Guess
	Remez Iteration

	Approximation by Tensor Product Splines
	Choice of Sites and Knots
	Least Squares Approximation as Function of y
	Approximation to Coefficients as Functions of x
	The Bivariate Approximation
	Switch in Order
	Approximation to Coefficients as Functions of y
	The Bivariate Approximation
	Comparison and Extension

	Examples
	Polynomial Curve Fitting
	Surface Fitting with Custom Equations to Biopharmaceutical Data
	How to Construct Splines
	Construct and Work with the B-form
	Construct and Work with the PPFORM
	How to Choose Knots
	Cubic Spline Interpolation
	Cubic Smoothing Splines
	Fitting a Spline to Titanium Test Data
	Splines in the Plane
	Constructing Spline Curves in 2D and 3D
	Smoothing a Histogram
	Bivariate Tensor Product Splines
	Solving a Nonlinear ODE with a Boundary Layer by Collocation
	Construct Chebyshev Spline
	Export Fit from Curve Fitter App to Simulink Lookup Table
	Fit Polynomial Model to Data
	Improve Model Fit with Weights
	Compare Robust Fitting Methods
	Fit Exponential Model to Data

	Functions
	Curve Fitter
	aptknt
	argnames
	augknt
	aveknt
	bkbrk
	brk2knt
	bspligui
	bspline
	category
	cfit
	chbpnt
	coeffnames
	coeffvalues
	confint
	csape
	csapi
	csaps
	cscvn
	datastats
	dependnames
	differentiate
	excludedata
	feval
	fit
	fitoptions
	fittype
	fn2fm
	fnbrk
	fnchg
	fncmb
	fnder
	fndir
	fnint
	fnjmp
	fnmin
	fnplt
	fnrfn
	fntlr
	fnval
	fnxtr
	fnzeros
	formula
	franke
	get
	getcurve
	indepnames
	integrate
	islinear
	knt2brk, knt2mlt
	newknt
	numargs
	numcoeffs
	optknt
	plot
	ppmak
	predint
	prepareCurveData
	prepareSurfaceData
	probnames
	probvalues
	quad2d
	rpmak
	rscvn
	rsmak
	set
	setoptions
	sfit
	sftool
	smooth
	slvblk
	sorted
	spap2
	spapi
	spaps
	spcol
	spcrv
	splinetool
	splpp, sprpp
	spmak
	spterms
	stcol
	stmak
	subplus
	titanium
	tpaps
	type

	Bibliography

